

Katalog Abwasser

Tauchmotor-Rührwerke

Rührwerke, Rezirkulationspumpen, Strahlreiniger, Sandfangpumpen und Zubehör für die kommunale Anwendung in Kläranlagen

Programmübersicht und Einsatzbereiche

Tauchmotor-Rührwerke und Rezirkulationspumpen

Produ	kttyp	Haupte	insatzber	eiche										Seite
		Belebungsbecken	Bioreaktoren	Industrielle Abwasserbehandlung	Pumpensümpfe	Regenrückhalte- einrichtungen	Schlammspeicher, Faultürme	Gülle und Biogasanlagen	Eisfreihaltung	Kaldnes – und Spezialklärverfahren	Aquakultur, Groß- aquarien, Seewasser	Strömungserzeugung	Rezirkulation	
							· · –			_ ~ ~/		·,		
Minip	rop Tauchmotor	-Rührwei	rke Wilo-	EMU										
	TR 14	-	-	•	•	•	0	-	-	О	•	0	-	26
	TR 16	-	-	•	•	•	0	_	-	0	•	0	-	26
	TR 21	0	-	•	•	0	0	0	0	0	•	0	-	26
	TR 28	•	0	•	•	0	0	_	0	•	•	•	-	26
Unipro	op Tauchmotor-	Rührwerl	ke – direk	tgetriebe	en Wilo-E	MU				1			1	
	TR 22	-	-	0	•	•	•	•	0	-	-	0		32
	TR 36	-	-	0	•	•	•	•	0	-	-	0	-	32
	TR 40		_	0	•	•	•	•	•	_	_	0	-	32
11	T	D::	······································	` - 4 - ' - 1 '	l	10121-	-1411	_	_	_	_	_	_	
Unipro	op Tauchmotor-			1				_	_			-		
	TR 50-2	0	0	•	•	0	•	•	•	0	0	•	-	42
	TR 60-2	0	•	•	•	0	•	•	•	•	0	•	-	42
	TR 75-2 TR 80-1			•	0	0	•	•	•		0	•	_	42
	TR 90-2	-	-	•	0	_	_	0	0	0	0	•	_	42
	TR 90-2	_			_	_	_	U	U		U		_	42
Maxi-	/Megaprop Tau	ıchmotor-	-Rührwer	ke Wilo-	EMU									
	TR 215/315		•		_	_	_			•	О	•	_	60
	TR 221/321	•	•	•	_	_	_	•	•	0	0	•	_	60
7	TR 226/326	•	•	•	_	_	_	•	0	0	0	•	_	60
Rezijet Rezirkulationspumpe Wilo-EMU														
	RZP 20	•	-	•	-	-	-	_	-	-	_	-	•	78
	RZP 25	•	-	•	-	-	-	-	-	-	-	-	•	78
	RZP 50-3	•	-	•	_	-	-	_	-	_	-	-	•	78
	RZP 60-3	•	-	•	-	-	-	-	-	-	-	-	•	78
Ī	RZP 80-2	•	-	•	-	-	-	-	-	-	-	-	•	78

Legende:

 $[\]bullet = {\sf Einsetzbar\ bzw.\ zutreffend;\ o = Typenabh\"{a}ngig\ einsetzbar;} \\ - = {\sf Nicht\ einsetzbar\ bzw.\ nicht\ zutreffend}$

 $[\]ensuremath{\overline{\mathcal{F}}}$ Neu im Programm bzw. Baureihenerweiterung oder -modifikation

Allgemeine Hinweise und Abkürzungen	4
Planungshinweise	6
Tauchmotor-Rührwerke	22
Wilo-EMU Miniprop	26
Wilo-EMU Uniprop - direktgetrieben Wilo-EMU Uniprop - mit Getriebe	32 42
Wilo-EMU Maxiprop / Megaprop	60

Rezirkulationspumpen 76 Wilo-EMU Rezijet 78

Zubehör für Rührwerke und Rezirkulationspumpen126Mechanisches Zubehör126Elektrisches Zubehör130

Maschinentechnische Ausrüstung131Strahlreiniger131Sandfangpumpen133

Allgemeine Hinweise und Abkürzungen

Verwendete Abkürzungen und ihre Bedeutung

Verwendete Abkürzungen und ihre Bedeutung					
Abkürzung	Bedeutung				
1~	1-Phasen-Wechselstrom				
3~	3-Phasen-Drehstrom				
-A	Schwimmerschalter angebaut				
D	Direkteinschaltung				
DI	Dichtigkeitsüberwachung				
DM	Drehstrommotor in Direkteinschaltung				
DN	Nennweite des Flanschanschlusses				
EBM	Einzelbetriebsmeldung				
EM	Wechselstrommotor mit Startkondensator				
ESM	Einzelstörmeldung				
GRD/GLRD	Gleitringdichtung				
Н	Förderhöhe				
I _A	Anlaufstrom				
I _N	Bemessungsstrom; Strom bei P ₂				
Inst.	Installation: H = horizontal, V = vertikal				
LB	Lieferbereitschaft (L = Lagerware, C = lieferbar in 2 Wochen, K = lieferbar in 4 Wochen, A = lieferbar auf Anfrage)				
P ₁	Aufnahmeleistung (zugeführte Leistung aus dem Stromnetz)				
$P_N = P_2$	Motorbemessungsleistung				
PN	Druckklasse in bar (z. B. PN10 = geeignet bis 10 bar)				
PTC	Positive Temperature Coefficient (Kaltleiterfühler)				
PT 100	Platin–Temperaturfühler mit einem Widerstandswert von 100 Ω bei 0 $^{\circ}\text{C}$				
Q (= V)	Förderstrom				
-S	Schwimmerschalter angebaut				
SBM	Betriebsmeldung bzw. Sammelbetriebsmeldung				
SSM	Störmeldung bzw. Sammelstörmeldung				
WSK	Wicklungsschutzkontakte (im Motor zur Überwa- chung der Wicklungstemperatur, Motorvollschutz durch zusätzl. Auslösegerät)				
Υ/Δ	Stern/Dreieckeinschaltung				
	Betriebsart von Doppelpumpen: Einzelbetrieb der relevanten Betriebspumpe				
(A) + (A)	Betriebsart von Doppelpumpen: Parallelbetrieb beider Pumpen				
(6)	Polanzahl von elektrischen Motoren: 2-poliger Motor = ca. 2900 1/min bei 50 Hz				
(6)	Polanzahl von elektrischen Motoren: 4-poliger Motor = ca. 1450 1/min bei 50 Hz				
(6)	Polanzahl von elektrischen Motoren: 6-poliger Motor = ca. 950 1/min bei 50 Hz				

Werkstoffbezeichnungen und ihre Bedeutung

Werkstoffbezeichnungen und ihre Bedeutung					
Werkstoff	Bedeutung				
1.4021	Chromstahl X20Cr13				
1.4057	Chromstahl X17CrNi16-2				
1.4112	Chromstahl X 90 Cr Mo V 18				
1.4122	Chromstahl X39CrMo17-1				
1.4301	Chrom-Nickel-Stahl X5CrNi18-10				
1.4305	Chrom-Nickel-Stahl X8CrNiS18-9				
1.4306	Chrom-Nickel-Stahl X2CrNi19-11				
1.4308	Chrom-Nickel-Stahl GX5CrNi19-10				
1.4401	Chrom-Nickel-Molybdän-Stahl X5CrNiMo17-12-2				
1.4408	Chrom-Nickel-Molybdän-Stahl GX5CrNiMo19-11-2				
1.4462	Chrom-Nickel-Molybdän-Stahl X2CrNiMoN22-5-3				
1.4470	Chrom-Nickel-Molybdän-Stahl GX2CrNiMoN22-5-3				
1.4517	Chrom-Nickel-Molybdän-Stahl mit Kupferzusatz GX2CrNiMoCuN25-6-3-3				
1.4541	Chrom-Nickel-Stahl mit Titanzusatz X6CrNiTi18-10				
1.4542	Chrom-Nickel-Stahl mit Kupfer- und Niobzusatz X5CrNiCuNb16-4				
1.4571	Chrom-Nickel-Stahl mit Titanzusatz X6CrNiMoTi17-12-2				
1.4581	Chrom-Nickel-Molybdän-Stahl mit Niobzusatz GX5CrNiMoNb19-11-2				
Abrasit	Hartgusswerkstoff für den Einsatz in stark abrasiven Medien				
Al	Leichtmetall-Werkstoff (Aluminium)				
Al-oxid	Aluminiumoxid				
С	Kohle				
Ceram	Keramikbeschichtung; Beschichtung mit sehr hohem Haftvermögen, Schutz vor Korrosion und Abrassion				
Composite	hochfestes Kunststoffmaterial				
Cr	Chrom				
EN-GJL	Grauguss (Gusseisen mit lamellarem Graphit)				
EN-GJS	Grauguss (Gusseisen mit Kugelgraphit, auch Sphäro- guss genannt)				
G-AlSi12	Druckgussaluminium				
GFK	Glasfaserkunststoff				
GG	siehe EN-GJL				
GGG	siehe EN-GJS				
Inox	rostfreier Stahl				
PA 30GF	siehe Composite				
PE-HD	Polyethylen mit hoher Dichte				
PP-GF30	Polypropylen, verstärkt mit 30% Glasfaser				

Allgemeine Hinweise und Abkürzungen

Werkstoff	Bedeutung
PUR	Polyurethan
SiC	Silizium-Karbid
St	Stahl
St.vz.	Stahl verzinkt
V2A (A2)	Werkstoffgruppe, z.B. 1.4301, 1.4306
V4A (A4)	Werkstoffgruppe, z.B. 1.4404, 1.4571

Verschleiß/Abnutzung

Pumpen oder Teile von Pumpen unterliegen gemäß dem Stand der Technik einer Abnutzung bzw. einem Verschleiß (DIN 31051/DIN-EN 13306). Dies kann je nach Betriebsparameter (Temperatur, Druck, Drehzahl, Wasserbeschaffenheit) und Einbau- bzw. Verwendungssituation unterschiedlich sein und dazu führen, dass vorgenannte Produkte bzw. Komponenten einschließlich der Elektrik/Elektronik zu unterschiedlichen Zeiten ausfallen.

Abnutzungs- oder Verschleißteile sind alle drehenden bzw. dynamisch beanspruchten Bauteile einschließlich spannungsbelasteter Elektronikkomponenten, insbesondere:

- Dichtung (inkl. Gleitringdichtung), Dichtungsring
- Stopfbuchse
- Lager und Welle
- Laufräder und Pumpenteil
- Lauf- und Spaltring
- Schleißring / Schleißplatte
- Schneidwerk
- Kondensator
- Relais / Schütz / Schalter
- Elektronikschaltung, Halbleiterbauelemente etc.

Bei Pumpen und Strömungsmaschinen (wie Tauchmotor–Rührwerke und Rezirkulationspumpen), sowie deren Komponenten mit Beschichtung (Kataphorese-, 2K- oder Ceram–Beschichtung) ist diese durch die schleifenden Inhaltsstoffe des Mediums einem ständigen Verschleiß ausgesetzt. Bei diesen Aggregaten zählt deshalb auch die Beschichtung zu den Verschleißteilen!

Für natürlichen Verschleiß oder natürliche Abnutzung wird keine Mängelhaftung übernommen.

Wilo - Allgemeine Liefer- und Leistungsbedingungen

Den jeweils gültigen Stand unserer Allgemeinen Liefer- und Leistungsbedingungen finden Sie im Internet unter www.wilo.de/agb

Tauchmotor-Rührwerke

Aufbau einer Kläranlage

Eine Kläranlage dient der Reinigung von Abwasser, das von der Kanalisation gesammelt und zu ihr transportiert wurde.

Zur Reinigung der unerwünschten Abwasserinhaltsstoffe werden mechanische, biologische und chemische Verfahren eingesetzt. Moderne Kläranlagen sind dementsprechend mehrstufig ausgeführt. Die erste Kläranlage auf dem europäischen Festland wurde 1882 in Frankfurt am Main in Betrieb genommen.

Anlagenteile Regenentlastung

Bei der Zuführung des Abwassers zur Kläranlage sind zwei Kanalisationssysteme zu unterscheiden, das Misch- und das Trennsystem.

Beim Mischsystem wird das Regen- und Abwasser in einem gemeinsamen Kanal der Kläranlage zugeleitet. Hier muss das Kanalnetz in der Regel durch einen Regenüberlauf und/oder durch ein Regenüberlaufbecken entlastet werden, damit die Kläranlage hydraulisch nicht überlastet wird. Dies kann in Form von Regenüberlaufbecken (RÜB) entweder bereits im Kanalnetz oder auch erst in der Kläranlage geschehen. Wenn keine derartigen Einrichtungen vorhanden sind, muss die Kläranlage entsprechende Reservekapazitäten vorsehen.

Das ankommende Regenwasser ist besonders nach langen Trockenzeiten sehr stark verschmutzt. Aufgrund langer Verweilzeiten im RÜB kommt es dort zu Absetzungen. Diese Ablagerungen können im anaeroben Milieu zu starken Geruchsbelästigungen führen. Hier setzen Wilo-Strahlreiniger an. Diese sind mit Wilo-Tauchmotorpumpen vom Typ Wilo-EMU ausgestattet und können somit auch im eingetauchten Zustand betrieben werden. Die Strahlreiniger bringen Sauerstoff in das Medium ein und verhindern somit ein Absetzen der Feststoffe.

Eine weitere Möglichkeit zur Suspendierung möglicher Ablagerungen im RÜB bietet der Einsatz unserer direktgetriebenen Wilo-Miniprop-Tauchmotor-Rührwerke. Diese können direkt am Beckenboden oder der Beckenwand befestigt werden und erzeugen ausreichende Turbulenzen, um dem Absetzen von Feststoffen entgegenzuwirken.

Beim Trennsystem wird das Abwasser in einer separaten Rohrleitung der Kläranlage zugeführt, während das Regenwasser durch einen eigenen Kanal, ggf. nach Reinigung in einem Regenklärbecken direkt zu einem Oberflächengewässer geleitet wird.

Rechen

In der Rechenanlage wird das Abwasser durch einen Rechen oder eine Siebtrommel geleitet. Im Rechen bleiben die groben Verschmutzungen wie Artikel der Monatshygiene, Präservative, Toilettenpapier, Wattestäbchen, Steine, aber auch Laub und tote Tiere hängen. Je schmaler der Durchgang für das Abwasser, desto weniger Grobstoffe enthält das Abwasser nach dem Rechen, was sich positiv auf den Verschleiß der Maschinentechnik in den nachfolgenden Reinigungsstufen auswirkt.

Man unterscheidet Feinrechen mit wenigen Millimetern und Grobrechen mit mehreren Zentimetern Spaltweite. Das Rechengut wird zum Entfernen der Fäkalstoffe maschinell gewaschen, mittels Rechengutpresse entwässert (Gewichtsersparnis) und anschließend verbrannt, kompostiert (Dünger) oder auf einer Deponie abgelagert.

Sandfang

Ein Sandfang ist ein Absetzbecken mit definierter Verweilzeit und der Aufgabe, grobe, absetzbare Verunreinigungen aus dem Abwasser zu entfernen, so beispielsweise Sand, Steine oder Glassplitter. Diese Stoffe können leicht zu betrieblichen Störungen in der Anlage führen (Verschleiß, Verstopfung). Ziel ist eine Abtrennung der anorganischen partikulären Substanzen von den organischen Inhaltsstoffen, die in den weiteren Reinigungsstufen eliminiert werden und in der Schlammfaulung zur Gasproduktion beitragen.

Mögliche Bauformen sind unter anderem:

- Langsandfang
- belüfteter Langsandfang, in dem zugleich Fette und Öle an der Oberfläche abgeschieden werden
- Rundsandfang
- Tiefsandfang

Am Beckenboden ist eine Belüftung angebracht, durch die eine Wirbelströmung erzeugt wird. Durch die eingeblasene Luft verringert sich die Dichte des Abwassers. Aufgrund dieser Effekte setzen sich die schweren mineralischen Anteile (vorwiegend Sand) am Beckenboden ab.

Tauchmotor-Rührwerke

Aufbau einer Kläranlage

Bei modernen Anlagen wird das Sandfanggut nach der Entnahme aus dem Sandfang gewaschen, das heißt von organischen Inhaltsstoffen befreit, um eine bessere Entwässerung und anschließende Verwertbarkeit (beispielsweise im Straßenbau) zu ermöglichen.

Beim Räumen des Sandfangs werden hohe Anforderungen an die Verschleißfestigkeit der verwendeten Pumpen gestellt. Ablagerungen (insbesondere Sand) müssen aufgewirbelt und abgepumpt werden. Hierfür bietet Wilo Sandfangpumpen an. Es handelt sich hierbei um Wilo-EMU FA-Pumpen mit mechanischer Rührvorrichtung (Wilo-EMU FA...RF). Dadurch wird der Sand nur im Bereich des Pumpeneinlaufs aufgewirbelt, feste Ablagerungen werden aufgelockert und können gefördert werden. Durch die eng begrenzte Strömungszone wird das Absetzen des Sandes nicht gestört. Der glatte Rohrzylinder kann sich in der Regel selbstständig von langen Faserstoffen freispülen. Da die Rührvorrichtung einem hohem Verschleiß ausgesetzt ist, wird diese aus dem Hartgusswerkstoff Abrasit gefertigt. Die Pumpen werden direkt an der Räumbrücke befestigt und in das Fördermedium eingetaucht.

Vorklärbecken

Die hydraulische Verweilzeit im Vorklärbecken ist deutlich größer als die im Sandfang. Daher ist die Korngröße der hier durch Sedimentation eliminierender Partikel deutlich kleiner als im Sandfang. Ungelöste Stoffe (Fäkalstoffe, Papier etc.) setzen sich ab oder schwimmen an der Oberfläche auf. Etwa 30 % der organischen Stoffe können damit entfernt werden. Es entsteht Primärschlamm, der bei den meisten Kläranlagen in den so genannten Voreindicker kommt. Zusammen mit dem Überschussschlamm aus der Belebungsanlage wird er dort eingedickt: Der Schlamm setzt sich ab und das überschüssige Wasser (Trübwasser) wird abgezogen, um einen höheren Gehalt an Trockensubstanz zu erreichen. Das Trübwasser wird dem Reinigungskreislauf der Kläranlage zurückgeführt. Der eingedickte Schlamm wird zur weiteren anaeroben Behandlung in den Faulturm gepumpt.

Bei modernen Anlagen mit Stickstoffelimination kann dieser Anlagenteil entfallen oder ist häufig klein bemessen. Dieses wird begründet durch die notwendige Präsenz organischer Stoffe im Abwasser zur Unterstützung der Denitrifikation.

Ebenso wird dieser Anlagenteil bei Kläranlagen mit simultaner, aerober Schlammstabilisierung in der biologischen Stufe nicht verwendet, da sonst weiterhin nicht stabilisierter Primärschlamm anfallen würde.

Biologische Stufe

In diesem Verfahrensteil werden durch Mikroorganismen, dem so genannten Belebtschlamm, die unerwünschten Abwasserinhaltsstoffe biologisch abgebaut. Hierzu wird das Abwasser belüftet. Es wurden zahlreiche Verfahren entwickelt: das Belebtschlammverfahren, das Tropfkörperverfahren, das Festbettreaktorverfahren.

Beispielhaft wird im folgenden das Belebtschlammverfahren beschrieben. Der Großteil der kommunalen Kläranlagen in Mitteleuropa wird nach diesem Verfahren betrieben.

Belebungsbecken

Beim Belebungsverfahren werden in so genannten Belebungsbecken durch Belüften der Suspension aus Abwasser und belebtem Schlamm die organischen Abwasserinhaltsstoffe oxidativ zu $\rm CO_2$ und $\rm H_2O$ abgebaut. Gleichzeitig erfolgt die Oxidation der enthaltenen Stickstoffverbindungen zu Nitrat, was den ersten Schritt der Stickstoffelimination darstellt.

Der zweite Schritt, die Denitrifikation, findet nur unter anoxischen Bedingungen (Abwesenheit von gelöstem Sauerstoff) statt. Sie muss daher zeitlich oder räumlich getrennt von der Nitrifikation erfolgen.

Das Belebtschlammverfahren wird im kontinuierlichen Durchlauf betrieben. Das heißt, dem Belebungsbecken läuft kontinuierlich Abwasser und Belebtschlamm zu. Gleichzeitig läuft im selben Maße die Suspension aus Abwasser und Belebtschlamm ab. Durch die Zugabe von Fällmitteln kann mittels chemischer Reaktionen außerdem der Nährstoff Phosphor entfernt werden.

Im Belebungsbecken werden Wilo-EMU Maxi-/Megaprop-Tauchmotor-Rührwerke eingesetzt, um während der unbelüfteten Phasen (Denitrifikation) eine ausreichende Vermischung und Strömungsgeschwindigkeit sicherzustellen.

Tauchmotor-Rührwerke

Aufbau einer Kläranlage

Nachklärbecken

Das Nachklärbecken bildet eine Prozesseinheit mit dem Belebungsbecken. In ihm wird der Belebtschlamm durch Absetzen aus dem Abwasser abgetrennt. Ein Teil des Schlammes wird in das Belebungsbecken zurückgeführt (Rücklaufschlamm), um die Konzentration an Mikroorganismen im Belebungsbecken konstant zu erhalten.

Der Überschuss (Zuwachs an Biomasse, Überschussschlamm) wird zur Weiterbehandlung in der Regel zusammen mit dem Schlamm des Vorklärbeckens in den Voreindicker abgeführt.

Die Rückführung des Schlammes wird durch Wilo-Rezirkulationspumpen sichergestellt. Diese haben die Eigenschaft, hohe Fördermengen über geringe Höhen fördern zu können.

Der Belebtschlamm muss gute Absetzeigenschaften aufweisen. Ist dies nicht der Fall, beispielsweise durch massenweises Wachstum fadenförmiger Mikroorganismen, treibt der Belebtschlamm aus dem Nachklärbecken in die nachfolgenden Gewässer ab. Dieses Phänomen heißt Bläh- und Schwimmschlamm und führt zu einer Beeinträchtigung des Vorfluters.

Faulbehälter

Der durch den Abbau der Abwasserinhaltsstoffe entstehende Biomassezuwachs wird als Klärschlamm beseitigt, meist aber in so genannten Faulbehältern unter anaeroben Bedingungen durch andere Mikroorganismen zu Faulschlamm und brennbarem Faulgas (im Wesentlichen ein Gemisch aus Methan und Kohlenstoffdioxid) abgebaut. Die Vorgänge verlaufen analog zu denen in einer Biogasanlage.

Das Faulgas wird häufig in gereinigter Form in Gasmotoren (oder auch Blockheizkraftwerken) zur Deckung des Eigenbedarfs an Strom (und Wärme) genutzt.

Der Faulschlamm wird anschließend in den Nacheindicker geleitet.
Dort wird er durch Absetzen eingedickt, um das Volumen und den
Wassergehalt weiter zu verringern. Mit speziellen, höhenverstellbaren
Abzugsvorrichtungen wird das Trübwasser gezielt abgezogen. Dort
werden Wilo-Uniprop-Tauchmotor-Rührwerke zur Homogenisierung
der eingedickten Schlämme eingesetzt.

Der entstehende Schlamm kann, wenn er frei von Schadstoffen und Giften ist, in der Landwirtschaft als organische Düngung verwendet werden. Andernfalls wird er in Kammerfilterpressen oder Zentrifugen noch weiter entwässert und in Müllverbrennungsanlagen verbrannt oder anderweitig entsorgt.

Reinigungsprozesse

- **1. Stufe:** Mechanische Verfahren bilden zumeist die erste Reinigungsstufe. Hier werden etwa 20 30 % der festen (ungelösten) Schwimm- und Schwebstoffe entfernt. In der weitergehenden Abwasserreinigung und der Industriewasserwirtschaft werden unter anderem Adsorption, Filtration und Strippung eingesetzt.
- 2. Stufe: Biologische Verfahren werden in der zweiten Reinigungsstufe kommunaler Abwasserreinigungsanlagen und für den Abbau organisch hochbelasteter Abwässer in der aeroben und anaeroben Abwasserreinigung eingesetzt. Sie verwenden mikrobiologische Abbauvorgänge. Dabei werden abbaubare organische Abwasserbestandteile möglichst vollständig mineralisiert, das heißt in der aeroben Abwasserreinigung bis zu den anorganischen Endprodukten Wasser, Kohlenstoffdioxid, Nitrat, Phosphat und Sulfat abgebaut.

In der anaeroben Abwasserreinigung werden sie zu organischen Säuren, Methan und Kohlenstoffdioxid umgesetzt. Üblicherweise werden damit die Kohlenstoffverbindungen aus dem Abwasser entfernt. Ebenso erfolgt die Entfernung von organisch gebundenem Stickstoff und Ammonium durch bakterielle Nitrifikation und Denitrifikation. Zunehmend wird in mittleren und großen Kläranlagen auch der Phosphor bakteriell eliminiert.

3. Stufe: Chemische Verfahren: Abiotisch-chemische Verfahren bedienen sich chemischer Reaktionen wie Oxidation und Fällung ohne Beteiligung von Mikroorganismen. Sie dienen in der kommunalen Abwasserreinigung vor allem der Entfernung von Phosphor durch Fällungsreaktionen. Dieser Prozess hat große Bedeutung zur Vermeidung der Eutrophierung der Vorfluter. Zudem werden abiotischchemische Verfahren zur Fällung in der Industriewasserwirtschaft und zur weitergehenden Abwasserreinigung (beispielsweise Flockung/Fällung/Filtration) eingesetzt.

Tauchmotor-Rührwerke

Aufbau einer Kläranlage

Physikalische Verfahren

Prozess	Kläranlagenkomponente	Zweck
Siebung	Rechen, Trommelsieb, Mikrosieb	Entfernung von größeren Feststoffen und Schwimmstoffen
Abscheidung	Schwimmstoff /Ölabscheider	Entfernung von Fetten und Ölen
Sedimentation	Sandfang, Absetzbecken, Zentrifugal- abscheider, Vor- und Nachklärbecken	Entfernung kleinerer Schwimmstoffe, Sand, geflockter Schwebstoffe; Entfernung des Belebtschlamms aus dem gereinigten Abwasser
Filtration	Sandfilter	Entfernung von Schwebstoffen
Flotation	Flotationsbecken, Fettfang	Entfernung von feinen Schmutzpartikeln durch Einblasen von Luft
Adsorption	Aktivkohlefilter	Anlagerung von beispielsweise halogenierten Kohlenwasserstoffverbindungen (AOX) oder Farbstoffen

Biologische Verfahren

Prozess	Kläranlagenkomponente	Zweck
Biochemische Oxidation	Belebtschlammverfahren, Tropfkörper	Aerober Abbau organischer Bestandteile zu anorganischen Endprodukten (H_2O , CO_2 , NO_3 -, N_2 , PO_4 -, SO_4 -) durch Belebtschlämme (Belebungsbecken) beziehungsweise Bakterienrasen (Tropfkörper). Durch geeignete Betriebsführung bei Belebungsanlagen kann die Phosphoraufnahme in die Biomasse optimiert werden (Bio-P). Somit ist weniger Fällmittel zur Phosphorelimination erforderlich. Grundsätzliches Ziel ist stets, zu entfernende Abwasserinhaltsstoffe durch biologische Prozesse (Veratmung, Biomassewachstum) in Formen zu überführen, die durch Sedimentation oder Strippung (gasförmiges Austreiben) aus dem Abwasser entfernt werden können und zudem möglichst unschädlich sind.
Biochemische Oxidation bei Kleinkläranlagen	Pflanzenkläranlage, Belebtschlamm- verfahren, Tropfkörper	Aerober und anaerober Abbau in flachen Becken und anschließendem Bo- dendurchgang bei Pflanzenkläranlagen oder Abbau durch Belebtschlämme in Belebungsbecken oder durch Bakterienrasen in Tropfkörpern
Schlammfaulung	Faulturm	Anaerober Abbau organischer Bestandteile des Primär– beziehungsweise Überschussschlammes zu anorganischen Endprodukten: Kohlenstoffdio-xid (CO $_2$), Methan (CH $_4$), Ammoniak (NH $_3$), Schwefelwasserstoff (H $_2$ S)
Anaerobe Abwasserreini- gung	Reaktor	Anaerober Abbau organischer Bestandteile zu anorganischen Endprodukten: Kohlenstoffdioxid (CO_2), Methan (CH_4), Ammoniak (NH_3), Schwefelwasserstoff (H_2 S). Besonders für organisch hochbelastete Abwässer geeignet (beispielsweise Lebensmittelindustrie, Tierkörperbeseitigung).

Chemische Verfahren

Prozess	Kläranlagenkomponente	Zweck
Flockung Flockungsbecken		Entfernung von Kolloidstoffen und feinen Schmutzpartikeln durch Flo- ckungsmittelzugabe beziehungsweise Einstellung des pH-Wertes
Neutralisation/pH-Wert	Neutralisationsbecken	Einstellung des pH-Wertes durch die Zugabe von Säure oder Base.
Fällung	Fällungsbecken, Bio-P-Becken	Ausfällung von Phosphationen (PO ₄ ³ -) mit Eisen- und Aluminiumsalzen
Simultanfällung	Belebungsbecken/Nachklärbecken	Entfernung von Phosphor (als Phosphat) durch Zugabe von Eisen- oder Aluminiumsalzen zum Belebtschlamm.
Vorfällung	Mischbecken/Vorklärbecken	Entfernung von Phosphor (als Phosphat) durch Zugabe von Eisen- oder Aluminiumsalzen vor dem Vorklärbecken.
Nachfällung	Mischbecken/Absetzbecken nach dem Nachklärbecken	Entfernung von Phosphor (als Phosphat) durch Eisen- oder Aluminiumsalzen nach dem Vorklärbecken.
Abiotische Oxidation	Sonderbecken	Zerstörung biotisch nicht abbaubarer organischer Verbindungen beispiels- weise durch Ozon oder UV-Licht. Gegebenenfalls mit dem Ziel, die Reste biotisch abbauen zu können (beispielsweise Entfärbung von Abwasser)
Desinfektion	Sonderbecken	Abtötung von Krankheitserregern durch Chlor- oder Ozonzugabe oder durch UV-Bestrahlung

Tauchmotor-Rührwerke

Aufbau einer Kläranlage

Belastungskenngrößen

Die Belastung von Kläranlagen wird nach Einwohnerwerten (EW) bestimmt. Dabei handelt es sich um die Summe aus den tatsächlichen Einwohnern (Einwohnerzahl, EZ) und den Einwohnergleichwerten (EGW). Der Einwohnergleichwert ist die Vereinbarungsgröße der für einen "Standardeinwohner" anzusetzenden Emission an Abwasser.

Für gewerbliche, industrielle und landwirtschaftliche Produktion werden auf Produktionsgrößen bezogenen Belastungen (z. B. 10 EW BSB₅ pro ha Weinbaufläche) angegeben. Zu beachten ist jedoch, dass sich die Verhältnisse zwischen den einzelnen Parametern verschieben können. Abwässer können höher konzentriert sein (weniger Abwassermenge bei gleicher Schmutzfracht), oder sie können beispielsweise reich an organischen Kohlenstoffverbindungen und dafür nährstoffarm sein.

Der Gehalt an biotisch abbaubaren Stoffen wird mit dem Summenparameter Biochemischer Sauerstoffbedarf, abgekürzt BSB, quantifiziert. In der Regel wird er mit dem biochemischen Sauerstoffverbrauch in Milligramm innerhalb von 5 Tagen unter Standardbedingungen von 20 °C gemessen und als BSB $_5$ bezeichnet. Für den biotischen Abbau ist ein Nährstoffverhältnis von BSB5:N:P von etwa 100:5:1 vorteilhaft, um die Mikroorganismen ausreichend mit Stickstoff und Phosphor zu versorgen. Dies fußt auf der Annahme, dass etwa 50 % der abgebauten organischen Stoffe zum Biomassewachstum verwendet werden und Biomasse zu etwa 10 % aus Stickstoff und zu etwa 2 % aus Phosphor besteht.

Ein Einwohnerwert, abgekürzt EW, entspricht folgenden Größen:

Abwassermenge

Als Belastung der Kläranlage mit Abwasser wurde früher ein Schmutzwasseranfall von 150 bis 200 l pro Einwohner und Tag angesetzt. Der Schmutzwasseranfall entspricht etwa dem Wasserverbrauch. Für Neuplanungen oder Vorausplanungen wird inzwischen der ortsspezifische Wasserverbrauch ermittelt und eine Abschätzung für die Zukunft versucht. Üblicherweise werden Schmutzwassermengen um die 130 l pro Einwohner und Tag angesetzt.

Dieser Wert berücksichtigt die in Mitteleuropa bei dichten Kanalnetzen üblichen Werte. Für die Bemessung der Kläranlage wird jedoch in der Regel ein Zuschlag für Fremdwasser (undichte Kanäle, Einleitungen von Drainagen und dergleichen) berücksichtigt. Dieser kann bis 100 % des Schmutzwasseranfalls betragen. Die Fremdwassermenge wird auf die angeschlossene versiegelte Fläche bezogen und sollte nicht mehr als 0,15 l/(s*ha) betragen.

Bei Mischkanalisationen (Regenwasser und Schmutzwasser in einem Kanal) sind entsprechende Zuschläge zur Abarbeitung des Regenwassers zu berücksichtigen, die meist mit 100 % der Tagesspitze bei Trockenwetter angesetzt werden.

Für die hydraulische Berechnung (Zahl und Größe der Förderpumpen) der Kläranlage ist zudem der Tagesgang der Belastung von Bedeutung. Die durchschnittliche Tagesfracht ist daher zur Bemessung nicht durch 24 Stunden, sondern durch eine kleinere Zahl (10 bis 14) für den maximalen Stundenwert zu teilen

Verschmutzungsgrad

BSB_c

Beim BSB₅-Wert, dem biochemischen Sauerstoffbedarf während einer Messzeit von 5 Tagen unter Standardbedingungen, wird jener Sauerstoffbedarf erfasst, der durch die Oxidation von organischen Stoffen durch aerobe Mikroorganismen entsteht. Er gehört zu den so genannten Summenparametern, da damit nicht der Abbau von Einzelverbindungen bestimmt werden kann.

Als üblicher Wert für den BSB₅ werden 60 g pro EW und Tag ange-

Davon können etwa 20 g in der Vorklärung durch Sedimentation entfernt werden.

Chemischer Sauerstoffbedarf

Der chemische Sauerstoffbedarf, abgekürzt auch CSB, gehört ebenfalls zu den so genannten Summenparametern, da damit keine Einzelverbindungen quantifiziert werden können. Er wird mittels der Oxidation der Abwasserinhaltsstoffe durch Kaliumdichromat bestimmt und erfasst den Sauerstoffbedarf zur Oxidation eines Großteils der organischen Stoffe. Sind im Abwasser auch oxidierbare anorganische Verbindungen wie beispielsweise Sulfite enthalten, werden diese ebenfalls als CSB erfasst.

Dieser Parameter wird ebenfalls zur Bilanzierung der Anlage herangezogen.

Für den CSB wird ein Wert von 120 g pro EW und Tag angesetzt.

Stickstoff

Stickstoff liegt im Rohabwasser hauptsächlich organisch gebunden (zum Beispiel in Proteinen, Nukleinsäuren, Harnstoff) und in Form von Ammoniumionen ($\mathrm{NH_4}^+$) sowie in geringen Anteilen auch in Form von Nitrat- ($\mathrm{NO_3}^-$) und Nitritionen ($\mathrm{NO_2}^-$) vor.

Angesetzt werden hier etwa 10 bis 12 g pro EW und Tag.

Phosphor

Phosphor liegt organisch als Phosphatgruppe gebunden und als freies Phosphat vor.

Hier werden etwa 1,8 g pro EW und Tag angenommen.

Tauchmotor-Rührwerke

Kosten- und Energieeffizienz von Wilo-Tauchmotor-Rührwerken

Die richtige Auswahl

Für den Betreiber einer Kläranlage ist es nicht leicht sich für das wirtschaftlichste Rührsystem zu entscheiden. Ausschlaggebend sollte auf keinen Fall der günstigste Investitionspreis sein, sondern ein wirtschaftlicher Rührwerksvergleich unter Berücksichtigung aller relevanten Einflussfaktoren. Dies macht aber nur dann Sinn, wenn alle am Rührprozess beteiligten Faktoren beachtet werden.

Hierzu zählen:

- Investitionskosten
- Installations- und Inbetriebnahmekosten
- Energie- und Betriebskosten
- Wartungs- und Reparaturkosten
- Betriebsausfallkosten
- Entsorgungskosten

Erst wenn sich die oben aufgeführten Einflussfaktoren in Euro ausdrücken lassen, ist ein objektiver Rührwerksvergleich möglich.

Energiekosten

Da viele Rührwerksanwendungen Dauerbetrieb voraussetzen, haben die Energiekosten einen maßgeblichen Einfluss. Entscheidende Kenngrößen von Tauchmotor–Rührwerken sind Schub (F*) und aufgenommene elektrische Leistung im Betriebspunkt ($P_{1,1}$ *).

Damit lassen sich wichtige Leistungsparameter ermitteln.

- Spezif. Schubleistung [N/kW] = Schub [F]/Leistung [P_{1.1}]
 Dieser Parameter kann zum Vergleich der Energieeffizienz unterschiedlicher Produkte herangezogen werden.
- Spezif. Leistungsdichte = Leistung [P_{1.1}ges] / Beckenvolumen Dieser Parameter ist das Maß zum Vergleich unterschiedlicher Rührwerksauslegungen und gibt Aufschluss über die zu erwartenden Energiekosten.

Kostenrechnung

Ein kleines Rechenbeispiel zeigt, dass durch eine energetisch optimierte Rührwerksauslegung eine enorme Kosteneinsparung vorhanden ist

Beckenvolumen: 2950 m³ Rührwerksauswahl:

- nach Investitionskosten: 3,63 W/m³ (spezif. Leistungsdichte)
- optimiert nach Betriebskosten: 1,7 W/m³ (spezif. Leistungsdichte)

Die Optimierung nach Betriebskosten bringt einen Vorteil von 1,93 $\,\text{W/m}^3$, was einer Einsparung bei diesem Becken von ca. 5700 $\,\text{W}$ entspricht.

Bei einer jährlichen Betriebszeit von 8760 Stunden und einem Kilowattpreis von 0,15 EUR bedeutet dies eine Kostenersparnis von 7480 EUR pro Becken pro Jahr.

Diese Ersparnis ist durch den Einsatz von hocheffizienten Tauchmotor-Rührwerken von Wilo möglich.

Kompetenz

Wilo selektiert Tauchmotor-Rührwerke mit Hilfe einer modernen Auslegungssoftware für Ihren spezifischen Einsatz und kann Ihnen daher die jeweils wirtschaftlichste Alternative anbieten. Teilen Sie uns Ihre auslegungsrelevanten Becken- und Mediumsdaten mit.

Wilo ist der richtige Ansprechpartner, wenn wirtschaftliche Problemlösungen zu einem günstigen Preis-Leistungs-Verhältnis gefunden werden müssen. Gerne unterbreiten wir Ihnen optimierte Lösungen mit einer flexiblen und robusten Systemtechnik.

Von der ersten Planung, über den Realisierungszeitraum, bis hin zum letzen Abnahmeversuch sind wir mit einem kompetenten Mitarbeiterteam für Sie da.

Gerne stellen wir unsere Leistungsfähigkeit unter Beweis. Das ist Pumpen Intelligenz.

*gemäß DIN ISO 21630

Tauchmotor-Rührwerke

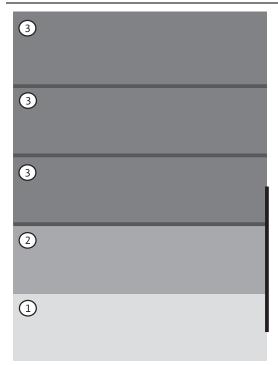
Flüssigkeramikbeschichtung Ceram

Ein moderner Korrosions- und Abrasionsschutz

Aggregate, die mit dem Fördermedium in Berührung kommen, sind sowohl hohen korrosiven als auch abrasiven Beanspruchungen ausgesetzt. Wilo bietet hierfür seine Flüssigkeramikbeschichtung Ceram an. Diese bietet einen zuverlässigen Schutz gegen diese Art von Beanspruchung.

Normale schwere Korrosionsschutzverfahren wie z. B. Zinkstaubgrundierungen mit dreifacher Teer–Epoxidbeschichtung sind so genannte Zwiebelschalenmodelle. Der Vorteil der Zinkstaubgrundierung liegt darin, dass sich der Zinkstaub opfert und dadurch das Zinkkarbonat Mikrorisse abdichten kann. Man spricht hier von der selbstheilenden Wirkung der Beschichtung. Der Nachteil liegt darin, dass die Nasshaftung dieser Zinkstaubgrundierungen nicht besonders hoch ist. Durch das Zwiebelschalenmodell herkömmlicher lösemittelhaltiger Beschichtungen hängt die Haftkraft von der Qualität der einzelnen Schichten ab.

Die Ceram-Beschichtung dagegen basiert auf dem Diamantmodel. Sie vereinbart die positiven Eigenschaften zweier Werkstoffe durch die Kombination keramischer Partikel in einer polymeren Matrix.


Die Keramikpartikel sind in der Matrix eingeschlossen. Somit gibt es keine Sollbruchstellen und die Haftfestigkeit ist sehr hoch, z.B. bei Ceram C0 von 15 N/mm². Da Ceram lösemittelfrei ist, können diese Beschichtungen mit einer Schicht aufgetragen werden.

Aufbau verschiedener Beschichtungen


Ceram-Beschichtungen gibt es in vier verschiedenen Qualitäten. Diese unterscheiden sich hinsichtlich ihrer Widerstandsfähigkeit gegen abrassive Angriffe. Während die Widerstandsfähigkeit gegen Korrosion bei allen vier Qualitäten sehr gut ist, erhöht sich die Resistenz gegen Abrasion mit steigender Ordnungszahl (CO = geringer Schutz gegen Abrasion; C3 = sehr guter Schutz gegen Abrasion) der Beschichtung, da immer gröbere Keramikpartikel verarbeitet werden. Die einzelnen Schichten werden in ihrer Stärke immer dicker und der Mix zwischen großen, mittleren und kleinen Aluminiumoxidanteilen ist so aufgebaut, dass auch bei Angriffen von feinem Sand die Beschichtung lange Stand halten.

- Ceram C0: Die Beschichtung wird im Airless-Verfahren in einer einzigen Schicht von 0,4 mm aufgetragen.
- Ceram C1: Die Beschichtung wird mit einem Pinsel aufgetragen und kann aus bis zu drei Lagen bestehen. Die Schichtdicke beträgt dann 1.5 mm.
- Ceram C2: Die Beschichtung wird mit einer Spachtel aufgetragen. Die Schichtdicke beträgt 1,5 mm und besteht aus einer Lage.
- Ceram C3: Die Beschichtung wird mit einer Spachtel aufgetragen. Die Schichtdicke beträgt 3 mm und besteht aus einer Lage. Bei engen Spalten bzw. Spielen ist eine mechanische Bearbeitung notwendig.

Für den Einsatz in speziellen Medien können die einzelnen Ceram-Qualitäten miteinander kombiniert werden, z. B. C2 + C1.

- 1.) Grundwerkstoff z. B. Gehäuse aus Grauguss
- 2.) 1. Schicht: Zinkstaubgrundierung (50 μ m), Haftfestigkeit 2,5 N/mm² 3.) 2. bis 4. Schicht: Teer–Epoxid (110 μ m), Haftfestigkeit 5 N/mm²
- Die Grafik zeigt den Aufbau einer Teer-Epoxidharz-Beschichtung mit Zinkstaubgrundierung. Die Beschichtung besteht aus 4 einzelnen Lagen mit einer Gesamtschichtdicke von 380 µm. Die drei dunkelgrauen Linien stellen die Schwachstellen dieser Beschichtung dar, die schwarze Linie die Sollbruchstelle.

- 1.) Grundwerkstoff z. B. Gehäuse aus Grauguss
- 2.) 1. Schicht: Ceram C0 (400 µm), Haftfestigkeit 15 N/mm²

Die Grafik zeigt den Aufbau einer Ceram CO-Beschichtung. Die Beschichtung besteht aus einer einzelnen Lage mit einer Gesamtschichtdicke von 400 µm. Durch das Auftragen im Airless-Spritzverfahren wird eine sehr hohe Oberflächengüte erreicht.

Tauchmotor-Rührwerke

Flüssigkeramikbeschichtung Ceram

Die Ceram-Beschichtung eignet sich weiterhin sehr gut für den Einsatz in maritimen Umgebungen. Wilo gewährt auf seine Ceram CO-Beschichtung eine Garantie von 5 Jahren bei Einsatz im Seewasser, Voraussetzung ist eine intakte Beschichtung.

Effizienz steigern, Kosten senken

Da mit dem Medium Wasser immer sparsamer umgegangen wird, werden es immer mehr Schmutzstoffanteile, relativ zum Wasseranteil. Dies hat eine erhöhte Konzentration von korrosiven und abrasiven Bestandteilen zur Folge.

Abwasseraggregate sind diesem aggressiven Medium permanent ausgesetzt. Korrosion und Abrasion beeinflussen die Oberflächenund Materialstrukturen der Aggregate mit teilweise erheblichen Beeinträchtigungen des Materials und somit der Leistungsfähigkeit.

So werden die hydraulischen Wirkungsgrade signifikant reduziert. Dies hat zum einen eine erhöhte Stromaufnahme der Aggregate zur Folge. Zum anderen fahren die Pumpen aus dem Optimum heraus, die Radialkräfte steigen an, die Beanspruchung auf Lager und Gleitringdichtungen werden höher und die Lebenserwartung der Maschinen sinkt.

Bei der Verwendung von Standardmaterialien wie z. B. Grauguss kann bei hoher Beanspruchung ein Austausch der Komponenten schon nach 500 Betriebsstunden erforderlich sein. Ceram-Beschichtungen ermöglichen eine bis zu 4-fach längere Standzeit – und dies bei gleichbleibend hohem Wirkungsgrad, sprich äußerst geringen Energiekosten.

Bei der Gesamtbetrachtung der Kosten über die ganze Lebensdauer der Pumpe sind dabei die Investitionskosten für ein mit Ceram beschichtetes Aggregat mit weniger als 10 % verschwindend klein. Demgegenüber steht ein vielfach höheres Einsparpotenzial durch deutlich geringere Reparaturaufwendungen und damit einhergehend erheblich weniger Stillstandszeiten der Anlage. Die Amortisation ist somit meistens durch den höheren Wirkungsgrad schnell erreicht.

Einsatz der verschiedenen Ceram-Qualitäten

- Ceram C0 wird für die komplette Außen- und Innenbeschichtung verwendet. Sie eignet sich hervorragend für den Korrosionschutz.
- Ceram C1 wird für die Innenbeschichtung von Pumpenteilen verwendet. Der Haupteinsatzbereich ist hierbei die Laufrad- und Saugstutzenbeschichtung.
- Ceram C2 und C3 werden für die Innenbeschichtung von Pumpenteilen verwendet. Der Haupteinsatzbereich ist hierbei die Beschichtung des Pumpengehäuses.

Um auch in besonders aggressiven und korrosiven Medien einen Schutz zu gewährleisten, werden die Ceram-Sorten miteinander kombiniert, z. B. C2 + C1 oder C3 + C1.

Tauchmotor-Rührwerke

Flüssigkeramikbeschichtung Ceram

Ceram CO - Technische Daten Beschreibung

Ceram C0 ist ein spritzfähiger, lösemittelfreier Zwei-Komponenten-Polymer-Beschichtungsstoff auf Keramikbasis für den Korrosionsschutz unserer Produkte bei zusätzlicher starker mechanischer Belastung.

Zusammensetzung

Lösemittelfreies Epoxy-Polymer mit lösemittelfreiem Polyamin-Härter und verschiedener Extendern.

Eigenschaften

- Zähharte und dauerhafte Beschichtung mit hoher mechanischer und chemischer Widerstandsfähigkeit und sehr guter Abriebfestigkeit.
- Hervorragende Nasshaftung und Verträglichkeit mit kathodischem Korrosionsschutz als einschichtige Beschichtung auf Stahloberflächen
- Sehr gute Haftung auf Stahloberflächen.
- Ersetzt teerhaltige Beschichtungen.
- Kostensparend durch lange Lebensdauer, geringe Wartung und leichte Ausbesserungsfähigkeit.
- Geprüft von der Bundesanstalt für Wasserbau (BAW).
- Lösemittelfrei.
- Ausgehärtete Beschichtung ist hochglänzend.

Technische Daten		
Dichte (Mischung) Haftfes- tigkeit /Stahl	ASTM D 792 ISO 4624	1,4 g/cm ³ 15 N/mm ²
Schlagzähigkeit /-festigkeit	DIN EN ISO 6272	9 J
Temperaturbeständigkeit: Trocken dauernd		60 °C
Temperaturbeständigkeit: Trocken kurzzeitig		120 °C
Temperaturbeständigkeit: Feucht /flüssig	je nach Medium; auf Anfrage	
Festkörpergehalt (Mi- schung)	Volumen Gewicht	97 % 98 %

Beständigkeitstabelle			
Medium	Temperatur	Faktor	
Abwasser alkalisch (pH 11)	+20 °C	1	
Abwasser alkalisch (pH 11)	+40 °C	1	
Abwasser leicht sauer (pH 6)	+20 °C	1	
Abwasser leicht sauer (pH 6)	+40 °C	1	
Abwasser stark sauer (pH 1)	+20 °C	2	
Abwasser stark sauer (pH 1)	+40 °C	3	
Ammoniumhydroxid (5 %)	+40 °C	3	
Decanol (Fettalkohol)	+20 °C	1	
Decanol (Fettalkohol)	+50 °C	1	
Ethanol (40 %)	+20 °C	1	
Ethanol (96 %)	+20 °C	3	
Ethylenglykol	+20 °C	1	

Beständigkeitstabelle		
Medium	Temperatur	Faktor
Heizöl/Diesel	+20 °C	1
Kompressorenöl	+20 °C	1
Methylethylketon (MEK)	+20 °C	3
Natronlauge (5 %)	+20 °C	1
Natronlauge (5 %)	+50 °C	2
Natriumchloridlösung (10 %)	+20 °C	1
Salzsäure (5 %)	+20 °C	2
Salzsäure (10 %)	+20 °C	2
Salzsäure (20 %)	+20 °C	3
Schwefelsäure (10 %)	+20 °C	2
Schwefelsäure (20 %)	+20 °C	3
Salpetersäure (5 %)	+20 °C	3
Toluol	+20 °C	2
Wasser (Kühl-/Brauchwasser)	+50 °C	1
Xylol	+20 °C	1

Legende: 1 = beständig; 2 = kurzfristig beständig; 3 = überlaufbeständig, sofortige Reinigung; 4 = nicht für direkten Kontakt empfohlan

14

Tauchmotor-Rührwerke

Flüssigkeramikbeschichtung Ceram

Ceram C1 - Technische Daten Beschreibung

Ceram C1 ist ein kalt härtendes, lösungsmittelfreies Keramikverbundmaterial auf 2-Komponenten-Basis mit ausgewählten Verstärker-Füllstoffen und Extendern.

Zusammensetzung

Polymer/Keramik Verbundmaterial aus Grundmasse und Verstärkung. Grundmasse: ein modifiziertes Polymer aus zwei Teilen mit einem aliphatischen Aushärtungsmittel.

Verstärkung: eine eigentumsrechtlich geschützte Mischung aus Aluminiumoxyd und Extendern.

Diese Keramikmischung hat ausgezeichnete Abriebfestigkeit und kann auf einfache Weise aufgetragen werden.

Eigenschaften

- Die vollständig ausgehärtete Beschichtung Ceram C1 ist hochglänzend, porenlos und leicht reinigungsfähig, mechanisch ausgezeichnet beständig, abriebfest und weist hervorragende Haftfestigkeit auf.
- Ceram C1 härtet schwundfrei aus und ist gegen eine große Anzahl von Chemikalien, Ölen, Fetten, Lösungsmitteln, verdünnten organischen und anorganischen Säuren und Laugen und Salzlösungen beständig.
- Ceram C1 vermindert die Reibung, verbessert den Durchfluss und die Effizienz.
- Ausgezeichneter Korrosionsschutz.

Technische Daten		
Härte	Buchholz	115
Dichte / Mischung	ASTM D 792	1,4 g/cm ³
Schrumpfung beim Härten	ASTM D 2566	0,002 mm/cm
Zugscherfestigkeit	ASTM D 1002	13,8 N/mm ²
Zugfestigkeit / Bruchdeh- nung	ASTM D 638	26,2 N/mm ²
Druckfestigkeit	ASTM D 695	60 N/mm ²
Biegefestigkeit	ASTM D 790	55,2 N/mm ²
Haftfestigkeit /Stahl	ISO 4624	13,8 N/mm ²
Schlagzähigkeit /- festigkeit	ASTM D 256	11 J/m
Längenausdehnungskoeffi- zient	ASTM D 696	34,5 x 10 ⁻⁶¹ 1/K
Elektrischer Widerstand	ASTM D 257	8 Ohm cm
Wärmeleitfähigkeit	ASTM C 177	0,7 W/m x K
Porenprüfung	Prüfspannung	5 V/µm Schichtdi- cke
Temperaturbeständigkeit trocken	ASTM D 648	140 °C
Temperaturbeständigkeit nass	ASTM D 648	60 °C

Beständigkeitstabelle	
Medium	Faktor
Säuren	
Schwefelsäure (10 %)	2
Schwefelsäure (20 %)	3
Salzsäure (5 %)	1
Salzsäure (10 %)	2
Salzsäure (20 %)	3
Salpetersäure (5 %)	1
Salpetersäure (10 %)	3
Phosphorsäure (5 %)	1
Phosphorsäure (20 %)	3
Laugen und Bleichen	
Natriumhydroxid (10 %)	1
Natriumhydroxid (50 %)	1
Ammoniak (5 %)	2
Ammoniumhydroxid (28 %)	1
Kaliumhydroxid (10 %)	1
Kaliumhydroxid (50 %)	1
Fixiersalz (6 %)	1
Seifenlösung (5 %)	1
Zementmörtel/Beton	1
Andere Verbindungen	
Isopropanol	1
Kerosin	1
Naphtha	1
Salzwasser	1
Abwasser	1
Toluen	1
Xylol	1
Bunker C	1
Dieselöl	1

Getestet bei 20 °C. Muster 12 Tage lang bei 20 °C ausgehärtet. Längeres Aushärten verbessert die chemische Widerstandsfähigkeit. Legende: 1 = beständig; 2 = kurzfristig beständig; 3 = überlaufbeständig, sofortige Reinigung; 4 = nicht für direkten Kontakt empfohlen

Tauchmotor-Rührwerke

Flüssigkeramikbeschichtung Ceram

Ceram C2 - Technische Daten Beschreibung

Ceram C2 ist ein Hochleistungskeramik-Verbundmaterial für Reparatur und Schutz aller Metalloberflächen, die Abrieb, Korrosion, Kavitation und chemischen Einwirkungen ausgesetzt sind. Ceram C2 wird in einer Schichtstärke von 1,5 mm aufgetragen. Es schrumpft nicht und besteht aus fast 100 % Feststoffen. Ceram C2 enthält einen hohen Anteil von Carbiden zur Anwendung bei extrem abrasiven Betriebsbedingungen, die aufwendigen und kostspieligen Reparaturmaßnahmen unterliegen. Das Material kann entweder zum Neuaufbau abgetragener Metallflächen oder als Vorbeugebeschichtung benutzt werden, die das Originalmetall an Abriebfestigkeit übertrifft. Ceram C2 kann an Stelle von Metallauftragungen, Kacheln, Gummiausfütterungen, usw. verwendet werden. Herausragend ist die thermische Belastbarkeit.

Zusammensetzung

Polymer/Keramik Verbundmaterial aus Grundmasse und Verstärkung Grundmasse: Ein modifiziertes Polymer aus zwei Teilen mit einem aliphatischen Aushärtungsmittel.

Verstärkung: Eine eigentumsrechtlich geschützte Mischung aus Aluminiumoxyd- und Siliciumcarbidteilchen. Diese Keramikmischung hat ausgezeichnete Abriebfestigkeit und kann auf einfache Weise aufgetragen werden.

Eigenschaften

- Ausgezeichnete Abriebfestigkeit sichert langen Betrieb und überdauert in den meisten Fällen einen aufgeschweißten Metallüberzug.
- Kann auf einfache Weise auf jede Metalloberfläche geformt werden.
- Seine zähe Kunstharzstruktur widersteht Temperaturschock und Schlag.
- Hervorragende Haftung sichert Zuverlässigkeit und verhindert Ablösungen.
- $\bullet \ Einfaches \ Auftragen \ reduziert \ Arbeitskosten \ und \ Stilllegungszeit.$
- Hält chemisch variierende Betriebsbedingungen aus, wenn Metalle versagen.
- Praktisches 4:1 Gewichts- und Volumenmischverhältnis.

Technische Daten		
Härte	Shore D	90
Dichte	ASTM D 792	1,85 g/cm ²
Schrumpfung beim Härten	ASTM D 2566	0 mm/cm
Zugscherfestigkeit	ASTM D 1002	13,24 N/mm ²
Zugfestigkeit / Bruchdeh- nung	ASTM D 638	27 N/mm ²
Druckfestigkeit	ASTM D 695	103,4 N/mm ²
Biegefestigkeit	ASTM D 790	69,0 N/mm ²
Haftfestigkeit / Stahl	ASTM C 633	
Schlagzähigkeit /- festigkeit	ASTM D 256	3,3 J/m
Längenausdehnungs- koeffizient	ASTM D 696	
Elektrischer Widerstand	ASTM D 257	
Wärmeleitfähigkeit	ASTM C 177	
Elektrische Durchschlags- festigkeit	ASTM D 149	4 KV/mm

Technische Daten		
Temperaturbeständigkeit trocken	ASTM D 648	250 °C
Temperaturbeständigkeit nass	ASTM D 648	80 °C

Beständigkeitstabelle	
Medium	Faktor
Säuren	Faktoi
	-
Schwefelsäure (10 %)	1
Schwefelsäure (20 %)	2
Salzsäure (5 %)	1
Salzsäure (10 %)	2
Salzsäure (20 %)	3
Essigsäure (5 %)	2
Essigsäure (10 %)	4
Laugen und Bleichen	
Natronlauge (10 %)	1
Natronlauge (30 %)	1
Ammoniumhydroxid (28 %)	1
Kaliumhydroxid (10 %)	1
Kaliumhydroxid (50 %)	1
Andere Verbindungen	
Isopropylalkohol	1
Kerosin	1
Naphtha	1
Salzwasser	1
Abwasser	1
Toluen	1
Xylen	1
Bunker C	1
Diesel	1

Getestet bei 20 °C. Muster 7 Tage lang bei 20 °C ausgehärtet. Längeres Aushärten verbessert die chemische Widerstandsfähigkeit. Legende: 1 = beständig; 2 = kurzfristig beständig; 3 = überlaufbeständig, sofortige Reinigung; 4 = nicht für direkten Kontakt empfohlen

Tauchmotor-Rührwerke

Flüssigkeramikbeschichtung Ceram

Ceram C3 - Technische Daten Beschreibung

Ceram C3 ist ein Hochleistungskeramik–Verbundmaterial für Reparatur und Schutz aller Metalloberflächen, die Abrieb, Korrosion und chemischen Einwirkungen ausgesetzt sind. Ceram C3 wird in einer Schichtstärke von 3 mm aufgetragen. Es schrumpft nicht und besteht aus fast 100 % Feststoffen. Ceram C3 enthält einen hohen Anteil von Carbiden zur Anwendung bei extrem abrasiven Betriebsbedingungen, die aufwendigen und kostspieligen Reparaturmaßnahmen unterliegen. Das Material kann entweder zum Neuaufbau abgetragener Metallflächen oder als Vorbeugebeschichtung benutzt werden, die das Originalmetall oft an Abriebfestigkeit übertrifft. Ceram C3 kann an Stelle von Metallauftragungen, Gummiausfütterungen, usw. verwendet werden.

Zusammensetzung

Polymer/Keramik Verbundmaterial aus Grundmasse und Verstärkung Grundmasse: Ein modifiziertes Polymer aus zwei Teilen mit einem aliphatischen Aushärtungsmittel.

Verstärkung: Eine eigentumsrechtlich geschützte Mischung aus Aluminiumoxyd- und Siliciumcarbidteilchen. Diese Keramikmischung hat ausgezeichnete Abriebfestigkeit und kann auf einfache Weise aufgetragen werden.

Eigenschaften

- Ausgezeichnete Abriebfestigkeit sichert langen Betrieb und überdauert in den meisten Fällen einen aufgeschweißten Metallüberzug.
- Seine zähe Kunstharzstruktur widersteht Temperaturschock und Schlag.
- Hervorragende Haftung sichert Zuverlässigkeit und verhindert Ablösungen.
- Einfaches Auftragen reduziert Arbeitskosten und Stilllegungszeit.
- Hält chemisch variierende Betriebsbedingungen aus, wenn Metalle versagen.
- Kann auf einfache Weise auf jede Metalloberfläche geformt werden.
- Praktisches 1,7:1 Gewichts- und Volumenmischverhältnis.

Technische Daten		
Härte	Shore D	90
Dichte	ASTM D 792	1,87 g/cm ³
Schrumpfung beim Härten	ASTM D 2566	0 mm/cm
Zugscherfestigkeit	ASTM D 1002	17 N/mm ²
Zugfestigkeit / Bruchdeh- nung	ASTM D 638	29,7 N/mm ²
Druckfestigkeit	ASTM D 695	103 N/mm ²
Biegefestigkeit	ASTM D 790	69 N/mm ²
Haftfestigkeit / Stahl	ASTM C 633	15,9 N/mm ²
Schlagzähigkeit/-festigkeit	ASTM D 256	12 J/m
Längenausdehnungs- koeffizient	ASTM D 696	61,8 x 10 ⁻⁶¹ 1/K
Elektrischer Widerstand	ASTM D 257	8 Ohm cm
Wärmeleitfähigkeit	ASTM C 177	0,75 w/m x K
Elektrische Durchschlags- festigkeit	ASTM D 149	13,4 KV/mm

Technische Daten		
Temperaturbeständigkeit trocken	ASTM D 648	190 °C
Temperaturbeständigkeit nass	ASTM D 648	65 °C

Beständigkeitstabelle	
Medium	Faktor
Säuren	
Schwefelsäure (10 %)	1
Schwefelsäure (20 %)	2
Salzsäure (5 %)	1
Salzsäure (10 %)	2
Salzsäure (20 %)	3
Essigsäure (5 %)	2
Essigsäure (10 %)	4
Laugen und Bleichen	
Natronlauge (10 %)	1
Natronlauge (30 %)	1
Ammoniumhydroxid (28 %)	1
Kaliumhydroxid (10 %)	1
Kaliumhydroxid (50 %)	1
Andere Verbindungen	
Isopropylalkohol	1
Kerosin	1
Naphtha	1
Salzwasser	1
Abwasser	1
Toluen	1
Xylen	1
Bunker C	1
Diesel	1

Getestet bei 20 °C. Muster 7 Tage lang bei 20 °C ausgehärtet. Längeres Aushärten verbessert die chemische Widerstandsfähigkeit. Legende: 1 = beständig; 2 = kurzfristig beständig; 3 = überlaufbeständig, sofortige Reinigung; 4 = nicht für direkten Kontakt empfohlen

Tauchmotor-Rührwerke

Ex-Schutz

Wilo-Aggregate sind für den Einsatz in explosionsgefährtenden Umgebungen zugelassen. Hierfür werden diese nach zwei unterschiedlichen Standards zertifiziert: der europäische ATEX-Standard sowie der amerikanische FM-Standard.

Atex-Standard

Die Aggregate sind gemäß der "EG-Richtlinie 94/09/EG" (ATEX 95) und den europäischen Normen DIN EN 60079-0, EN 60079-1 konstruiert. Sie dürfen in explosionsgefährtenden Atmosphären, die elektrische Geräte der Gerätegruppe II, Kategorie 2 benötigen, betrieben werden.

Es ist somit ein Einsatz in Zone 1 und Zone 2 möglich. Diese Aggregate dürfen nicht in Zone 0 zum Einsatz kommen!

Die Wilo-Aggregate sind wie folgt gekennzeichnet: II 2 G Ex d IIB T4

Ш Gerätegruppe II

Bedeutung: bestimmt für explosionsge-

fährdete Orte außer Minen

2 Kategorie

Stoffgruppe G Bedeutung: Gase

Ex Ex-geschütztes Gerät gemäß Euronorm

d Zündschutzart Motorgehäuse

Bedeutung: Druckfeste Kapselung

IΙΒ Explosionsgruppe

Bedeutung: für den Gebrauch zusammen mit Gasen der Unterteilung B, alle Gase ausgenommen H₂, C₂H₂, CS₂

Temperaturklasse

Bedeutung: max. Oberflächentemperatur

des Gerätes ist 135 °C

FM-Standard

T4

Die Aggregate sind von der anerkannten Prüfungs- und Zulassungsbehörde "FM Approvals" gemäß den Normen FM 3600, 3615, 3615.80 und ANSI/UL-1004 zertifiziert und zugelassen. Sie dürfen in explosionsgefährtenden Bereichen, die elektrische Geräte der Schutzart "Explosionproof, Class 1, Division 1" benötigen, betrieben werden. Es ist somit auch ein Betrieb in Bereichen mit der geforderten Schutzart "Explosionproof, Class 1, Division 2" nach FM-Standard möglich.

Die Wilo-Aggregate sind wie folgt gekennzeichnet:

Division 1; Groups C, D Class 1

Bedeutung: Gase, Dämpfe, Nebel; Ex-Atmosphäre ständig oder gelegentlich unter normalen Bedingungen vorhanden; Gasgruppen: Ethylen (C), Propan (D)

Class 2 Divison 1; Groups E, F, G

Bedeutung: Stäube; Ex-Atmosphäre ständig oder gelegentlich unter normalen Bedingungen vorhanden; Staubgruppen: Metall (E), Kohle (F), Getreide (G)

Bedeutung: Fasern und Flusen

T3C Temperaturklasse

Class 3

Bedeutung: max. Oberflächentemperatur

der Maschine 160 °C

Temperaturüberwachung

Ex-zertifizierte Motoren sind standardmäßig mit einer Temperaturüberwachung ausgestattet. Diese sieht wie folgt aus:

- Motoren der Baugröße T 12 und T 13 Wicklung: Temperaturbegrenzer 140 °C
- Motoren der Baugröße T 17 und größer Wicklung: Temperaturregler 130 °C, Temperaturbegrenzer 140 °C
- Motoren der Baugröße FK 17.1 Wicklung: Temperaturbegrenzer 120 °C, Öl: Temperaturbegrenzer
- Motoren der Baugröße T 20.1, HC 20.1 und FKT 27.1 Wicklung: Temperaturbegrenzer 160 °C, Blechpaket: Temperaturbegrenzer 110 °C

Die Temperaturüberwachung ist so anzuschließen, dass beim Auslösen der "Temperaturregler" eine automatische Wiedereinschaltung erfolgen kann. Beim Auslösen der "Temperaturbegrenzer" darf eine Wiedereinschaltung erst dann möglich sein, wenn die "Entsperrtaste" von Hand betätigt wurde.

Frequenzumrichterbetrieb

Für den Betrieb an einem Frequenzumrichter müssen die Motoren mit Kaltleitertemperaturfühler ausgestattet werden. Geben Sie diesen Einsatzzweck bei der Bestellung mit an, damit wir die Motore dementsprechend ausstatten können.

Dichtraumüberwachung

Die Aggregate können mit einer externen Dichtraumkontrolle ausgestattet werden. Diese kann auch nachträglich installiert werden. Ist das Aggregat mit einer externen Dichraumüberwachung ausgerüstet, darf diese nur an einem eigensicheren Stromkreis angeschlossen werden.

Definition der Ex-Zonen

Die Ex-Zonen sind in den jeweiligen Standards fest definiert. Die Auszeichnung der Zonen im Betriebsbereich der Aggregate muss durch den Betreiber erfolgen. Geben Sie bitte bei der Bestellung an, welchen Ex-Standard Sie zugrunde legen und in welcher Zone Sie das Aggregat betreiben möchten.

Tauchmotor-Rührwerke

Ex-Schutz

Tauchmotor-Rührwerke

	Rührwerke Miniprop	Rührwerke Uniprop – direktgetrieben	Rührwerke Uniprop – mit Getriebe	Rührwerke Maxiprop/ Megaprop	Rezirkulations pumpen Rezijet
Konstruktion				3,1	
Explosionsschutz		•	•	•	•
Dichtkammer		•	•	•	•
Vorkammer	-	_	•	•	•
Getriebekammer	-	-	•	•	•
direktgetrieben		•	-	-	•
FU-Betrieb		•	•	•	•
1-stufiges Planetengetriebe	-	-	•	-	•
2-stufiges Planetengetriebe	-	_	-	•	-
Abdichtung motorseitig Gleitringdichtung		_	•	•	•
Abdichtung motorseitig Wellendichtring	-	•	•	•	•
Abdichtung mediumseitig Gleitringdichtung		•	•	•	•
Abdichtung mediumseitig Wellendichtring	-	_	-	-	-
Anwendung					
Nassaufstellung Bodenmontage	•	•	-	-	-
Nassaufstellung Wandmontage	•	•	-	-	-
Nassaufstellung Absenkvorrichtung	•	•	•	-	•
Nassaufstellung Stativ	-	-	•	•	-
Werkstoffe					
Gusspropeller	-	•	-	_	_
Stahlpropeller		•	•	-	•
PUR-Propeller	•	•	•	_	•
PUR/GFK-Propeller	-	_	•	_	-
GFK-Propeller	-	-	-	•	-
Ausstattung/Funktion					
Überwachung Motortemperatur Bi-Metall		•	•	•	•
Überwachung Motortemperatur PTC	optional	optional	optional	optional	optional
Überwachung Motordichtigkeit		•	•	•	•
Überwachung Dichtkammer	optional	optional	optional	optional	optional
		1			+

Motordaten												
Wilo-EMU	Anlaufstrom – direkt	Anlaufstrom – Stern-Dreieck	Nennstrom	Leistungsaufnahme	Motornennleistung	Wirkungsgrad	Betriebsart (eingetaucht)	F. Cohieta		Isolierstoffklasse	Medientemperatur max.	Max. Schalthäufigkeit /h
	I,	A	I _N	P ₁	P ₂	η _M	-	ATEX	FM	-	Т	-
		[A]	T		w]		T	_		T	[°C]	
T 12-4/6 (Ex)	6	2	1,42	0,73	0,5	0,69	S1	•	•	F	40	15
T 12-4/11 (Ex)	16	6	2,5	0,76	0,5	0,66	S1	•	•	F	40	15
T 17-2/15R (Ex)	77	26	12,8	7,9	6,75	0,86	S1	•	•	F	40	15
T 17-2/22R (Ex)	171	57	20,5	12,3	10,5	0,86	S1	•	•	F	40	15
T 17-2/8R (Ex)	55	19	7,2	4,35	3,5	0,81	S1	•	•	F	40	15
T 17-4/8V (Ex)	28	10	5,9	3,5	2,5	0,72	S1	•	•	F	40	15
T 17-4/12R (Ex)	47	16	9,4	5,8	4,5	0,78	S1	•	•	F	40	15
T 17-4/16R (Ex)	68	23	13,5	8,2	6,5	0,8	S1	•	•	F	40	15
T 17-4/24R (Ex)	123	41	21	12,2	10	0,82	S1	•	•	F	40	15
T 17-4/8R (Ex)	37	13	7,9	4,5	3,5	0,78	S1	•	•	F	40	15
T 17-6/12R (Ex)	31	11	6,2	3,45	2,5	0,73	S1	•	•	F	40	15
T 17-6/16R (Ex)	39	13	9,1	5,2	3,7	0,72	S1	•	•	F	40	15
T 17-6/24R (Ex)	65	22	13,6	7,7	6	0,78	S1	•	•	F	40	15
T 17-6/8R (Ex)	17	6	4,45	2,5	1,75	0,7	S1	•	•	F	40	15
T 17-8/12R (Ex)	24	8	5,2	2,75	1,8	0,66	S1	•	•	F	40	15
T 17-8/16R (Ex)	36	12	7,4	3,95	2,75	0,7	S1	•	•	F	40	15
T 17-8/24R (Ex)	63	21	14,3	7,7	5,1	0,67	S1	•	•	F	40	15
T 17-8/8R (Ex)	14	5	3,2	1,67	1,1	0,66	S1	•	•	F	40	15
T 20-2/22R (Ex)	215	71	30,5	18,6	15,5	0,83	S1	•	•	F	40	15
T 20-4/22R (Ex)	156	52	26	15,3	12,5	0,82	S1	•	•	F	40	15
T 20-4/27R (Ex)	192	64	32	18,9	16	0,85	S1	•	•	F	40	15
T 20-4/30R (Ex)	220	73	36,5	22	18,5	0,86	S1	•	•	F	40	15
T 20-6/22R (Ex)	97	33	19,4	11,2	9	0,81	S1	•	•	F	40	15
T 20-6/27R (Ex)	121	40	24,5	14,1	11,5	0,82	S1	•	•	F	40	15
T 20-6/32R (Ex)	140	47	26	14,9	12,5	0,84	S1	•	•	F	40	15
T 20-8/22R (Ex)	82	27	16,2	8,4	6,8	0,81	S1	•	•	F	40	15
T 20-8/27R (Ex)	100	33	20	10,5	8,6	0,82	S1	•	•	F	40	15
T 20-8/32R (Ex)	110	37	21,5	11,5	9,6	0,84	S1	•	•	F	40	15

Rührwerke

Baureihenübersicht Wilo-EMU Miniprop, Uniprop, Maxiprop, Megaprop

Baureihe: Wilo-EMU Miniprop

> Einsatz

- Verwirbelung von Ablagerungen und Feststoffen in Regenrückhaltebecken und im Pumpensumpf
- Zerstörung von Schwimmschlammdecken
- Weitere Anwendungsbereiche in der Landwirtschaft und Wasserversorgung

Baureihe: Wilo-EMU Uniprop - direktgetrieben

> Einsatz

- Verwirbelung von Ablagerungen und Feststoffen in Regenrückhaltebecken und im Pumpensumpf
- Zerstörung von Schwimmschlammdecken
- Weitere Anwendungsbereiche in der Landwirtschaft und Wasserversorgung

Baureihe: Wilo-EMU Uniprop - mit Getriebe

> Einsatz

Einsatz in Belebungsbecken und Schlammbehältern zur:

- Strömungserzeugung
- Suspension von Feststoffen
- Homogenisierung
- Verhinderung von Schwimmschlammdecken
- Weitere Anwendungsbereiche in der Industrie, Landwirtschaft und Wasserversorgung

hmotor-Rührwerke

Tauchmotor-Rührwerke

Rührwerke

Baureihenübersicht Wilo-EMU Miniprop, Uniprop, Maxiprop, Megaprop

Baureihe: Wilo-EMU Miniprop

`	Reson	derhe	iten	Produ	ktvorte	ile

- geringe Leistungsaufnahme
- geringes Gewicht
- ATEX- und FM-Ausführung
- selbstreinigender Propeller mit Helix-Nabe
- montagefreundliche Propellerbefestigung
- Propeller in Stahl- oder PUR-Ausführung
- Optional: Motorwelle in Werkstoff 1.4462

> Weitere Informationen	Seit
Baureihenbeschreibung	26
• TR 14	28
• TR 16	28
• TR 21	28
• TR 28	28
• Einbaubeispiele	30

Baureihe: Wilo-EMU Uniprop - direktgetrieben

> Besonderheiten/Produktvorteile

- selbstreinigender Propeller mit Helix-Nabe
- montagefreundliche Propellerbefestigung
- Propeller in Grauguss-, Stahl- oder PUR-Ausführung
- ATEX- und FM-Ausführung

> Weitere Informationen	Seit
Baureihenbeschreibung	32
• TR 22	34
• TR 36	36
• TR 40	38
• Einbaubeispiele	40

Baureihe: Wilo-EMU Uniprop - mit Getriebe

> Besonderheiten/Produktvorteile

- 1-stufiges Planetengetriebe zur Anpassung der Propellerdrehzahl
- selbstreinigender Propeller
- montagefreundliche Propellerbefestigung
- Propeller in Stahl-, PUR- oder PUR/GFK-Ausführung
- ATEX- und FM-Ausführung
- Getriebewelle in 1.4462

> Weitere Informationen	Seite
Baureihenbeschreibung	42
• TR 50-2 (PUR)	44
• TR 50-2 (St)	46
• TR 60-2 (PUR)	48
• TR 60-2 (St)	50
• TR 75–2	52
• TR 80-1	54
• TR 90-2	56
Einbaubeispiele	58

Rührwerke

Baureihenübersicht Wilo-EMU Miniprop, Uniprop, Maxiprop, Megaprop

Baureihe: Wilo-EMU Maxiprop/Megaprop

> Einsatz

- energetisch optimiertes Durchmischen und Umwälzen von Belebtschlämmen
- Erzeugung von Strömungsgeschwindigkeiten in Umlaufkanälen
- Weitere Anwendungsbereiche in der Industrie

Tauchmotor-Rührwerke

Rührwerke

Baureihenübersicht Wilo-EMU Miniprop, Uniprop, Maxiprop, Megaprop

Baureihe: Wilo-EMU Maxiprop/Megaprop

- 2-stufiges Planetengetriebe zur Anpassung der Propellerdrehzahl
- selbstreinigender Propeller
- Propellerflügel einzeln austauschbar
- montagefreundliche Flügel- und Nabenbefestigung
- Propeller in GFK-Ausführung
- ATEX- und FM-Ausführung
- Getriebewelle in 1.4462

> Weitere Informationen	Seit
Baureihenbeschreibung	60
• TR 215	62
• TR 221	64
• TR 226	66
• TR 315	68
• TR 321	70
• TR 326	72
• Einbaubeispiele	74

Rührwerke Miniprop

Baureihenbeschreibung Wilo-EMU Miniprop

Bauart

Kompaktes direktgetriebenes Tauchmotor-Rührwerk

Typenschlüssel

, ypensemuss	
z. B.:	Wilo-EMU TR 21.145-4/11 S10
TR	Tauchmotor-Rührwerk
21	x 10 = Propeller-Nenndurchmesser in mm
145	x 10 = Propellerdrehzahl in 1/min
4	Polzahl
11	x 10 = Statorlänge in mm
S10	Propellercode für Schweißpropeller (ohne =

Einsatz

- Verwirbelung von Ablagerungen und Feststoffen in Regenrückhaltebecken und im Pumpensumpf
- Zerstörung von Schwimmschlammdecken

Propeller)

 Weitere Anwendungsbereiche in der Landwirtschaft und Wasserversorgung

Besonderheiten/Produktvorteile

- geringe Leistungsaufnahme
- geringes Gewicht
- ATEX- und FM-Ausführung
- selbstreinigender Propeller mit Helix-Nabe
- $\bullet\ montage freundliche\ Propeller befestigung$
- Propeller in Stahl- oder PUR-Ausführung
- Optional: Motorwelle in Werkstoff 1.4462

Technische Daten

- Netzanschluss: 3~400 V, 50 Hz
- Betriebsart eingetaucht: S1
- Schutzart: IP 68
- max. Mediumstemperatur: 40 °C
- Gleitringdichtung mit SiC/SiC-Paarung
- dauergeschmierte Wälzlager
- max. Tauchtiefe: 12,5 m

Ausstattung/Funktion

• stationäre Montage an Wand und Boden

- flexible Montage über Absenkvorrichtung oder spezielle Rohrbefestiqung
- vertikal und horizontal schwenkbar bei Montage mit Absenkvorrichtung

Werkstoffe

- Gehäuseteile: EN-GJL-250
- Propeller: PUR oder Edelstahl 1.4571
- Propellernabe: Edelstahl1.4571
- Schraubverbindungen: Edelstahl 1.4301 bzw. 1.4571
- Dichtbuchse: Edelstahl 1.4571

Beschreibung/Konstruktion Propeller

2-flügliger Propeller mit einem Propeller-Nenndurchmesser von 140 mm bis 280 mm. Verzopfungsfreie Konstruktion durch rückwärtsgekrümmte Anströmkante und patentierter Helix-Nabe.

Motor

Wilo-Tauchmotor der T-Baureihe mit standardisiertem Anschluss zur einfachen und effizienten Anpassung der Motorleistung. Die Motorwärme wird über das Gehäuse direkt an das Medium abgegeben. Die Wicklung ist mit einer Temperaturüberwachung ausgestattet. Eine hohe Lebensdauer der Motorlagerung wird durch groß dimensionierte Rillenkugellager gewährleistet.

Abdichtung

Doppelte Wellenabdichtung mit großvolumiger Dichtungskammer zur Aufnahme der Leckage der Gleitringdichtung, auf Wunsch mit externer Dichtraumelektrode. Motor- und mediumseitig wird eine korrosionsbeständige und verschleißfeste Gleitringdichtung aus Vollmaterial Sillizium-Karbid eingesetzt. Eine Dichtbuchse gewährleistet einen dauerhaft korrosionsgeschützten Sitz der Gleitringdichtung.

Kabel

Bei der Stromzuführungsleitung handelt es sich um den Typ H07 für schwere mechanische Beanspruchungen. Die Stromzuführungsleitung ist über eine druckwasserdichte Kableinführung mit Zugentlastung und Knickschutz in das Motorgehäuse eingeführt.

Optionen

- Sonderspannungen
- Kaltleitertemperaturfühler
- externe Dichtraumkontrolle
- Flüssigkeramikbeschichtung Ceram C0
- Ex-Zulassung nach ATEX oder FM

Lieferumfang

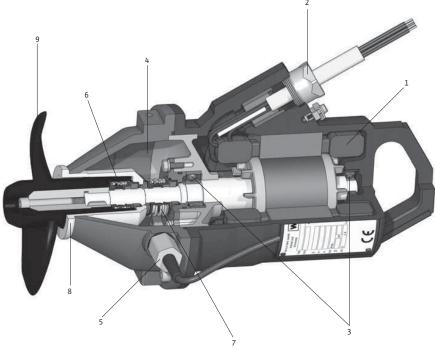
- Tauchmotor-Rührwerk mit montiertem Propeller und Kabel
- Kabellänge nach Kundenwunsch
- Zubehör nach Kundenwunsch
- Betriebs- und Wartungshandbuch

Auslegung

Um ein optimales Ergebnis bei der Strömungserzeugung zu gewährleisten, muss für jeden Anwendungsfall eine separate Auslegung erfolgen. Installieren Sie die Aggregate genau nach den Vorgaben der gelieferten Auslegung.

Rührwerke Miniprop

Baureihenbeschreibung Wilo-EMU Miniprop

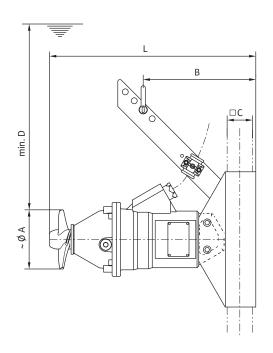

Inbetriebnahme

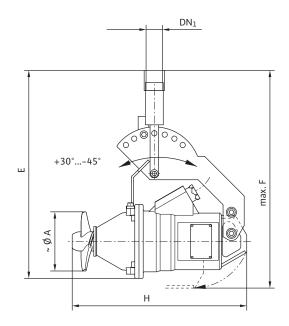
Betriebsart S1 - Dauerbetrieb:

Das Tauchmotor-Rührwerk muss eingetaucht betrieben werden. Ein Austauchen des Propellers ist untersagt. Bei schwankenden Pegelständen muss eine automatische Abschaltung erfolgen, sobald die Mindestwasserüberdeckung unterschritten wird. Die Stromzuführungsleitung ist so zu installieren, dass diese nicht in den Propeller gezogen werden kann!

Zubehör

- Absenkvorrichtung
- Hilfshebevorrichtung
- Wand- und Bodenbefestigungskonsole
- Spezialbefestigungsteile zur Verwendung einer Hilfshebevorrichtung für mehrere Aggregate
- Klemmanschlag
- zusätzliche Seilabspannung
- Befestigungssätze mit Verbundanker




1 = Motor; 2 = Kabeleinführung; 3 = Motorlager, 4 = Dichtungskammer; 5 = externe Elektrode zur Überwachung der Dichtungskammer; 6 = mediumseitige Gleitringdichtung; 7 = motorseitige Gleitringdichtung; 8 = Dichtbuchse, 9 = Propeller

Rührwerke Miniprop

Maße, Gewichte Wilo-EMU TR 14, TR 16, TR 21, TR 28

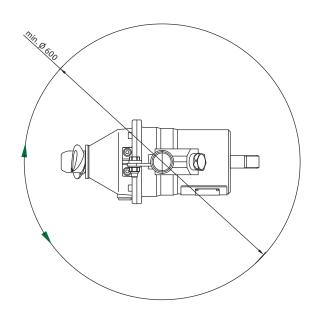
Maßzeichnung

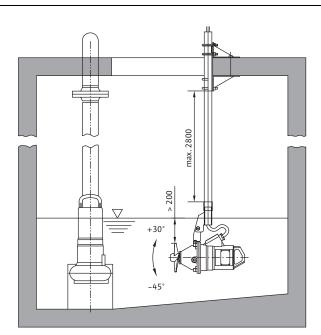
Maße, Gewichte										
Wilo-EMU	Abmessungen								Anschluss	Gewicht
	Α	В	С	D	Е	F	Н	L	DN ₁	Aggregat
					[mm]					[kg]
TR 14/6	140	245	60	200	495	520	415	475	Rp 1¼	20
TR 16/6	160	245	60	200	495	520	415	475	Rp 1¼	20
TR 21/6	220	245	60	200	480	530	415	475	Rp 1¼	20
TR 21/6 S	210	245	60	200	480	530	415	475	Rp 1¼	22
TR 21/11	220	300	60	200	480	530	470	530	Rp 1¼	26
TR 21/11 S	210	300	60	200	480	530	470	530	Rp 1¼	28
TR 28/11	280	300	60	300	515	603	505	565	Rp 1¼	27

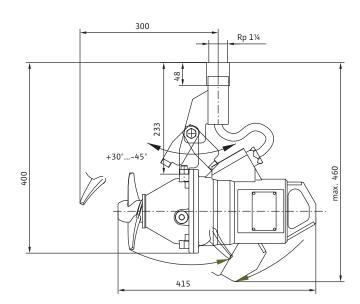
Technische Daten, Motordaten Wilo-EMU TR 14, TR 16, TR 21, TR 28

Technische Daten									
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft					
	max. P _{1.1}	n	-	F					
	[kW]	[1/min]	-	[N]					
TR 14.145-4/6	0,26	1336	1,000	45					
TR 16.145-4/6	0,3	1336	1,000	65					
TR 21.145-4/6	0,34	1336	1,000	75					
TR 21.145-4/6 S5	0,45	1336	1,000	95					
TR 21.145-4/11	0,51	1392	1,000	80					
TR 21.145-4/11 S10	0,9	1392	1,000	170					
TR 21.145-4/11 S14	1,2	1392	1,000	240					
TR 28.145-4/11	1,3	1392	1,000	330					

Motordaten								
Wilo-EMU	Motornenn- leistung Leistungsaufnahme Nennstrom Nenndrehzahl Ex-					Schutz nach		
	P ₂	P ₂ P ₁		n	FM	ATEX		
		[kW]		[1/min]		_		
T 12-4/11 (Ex)	1,3	1,74	3,3	1392	•	•		
T 12-4/6 (Ex)	0,5	0,73	1,42	1336	•	•		

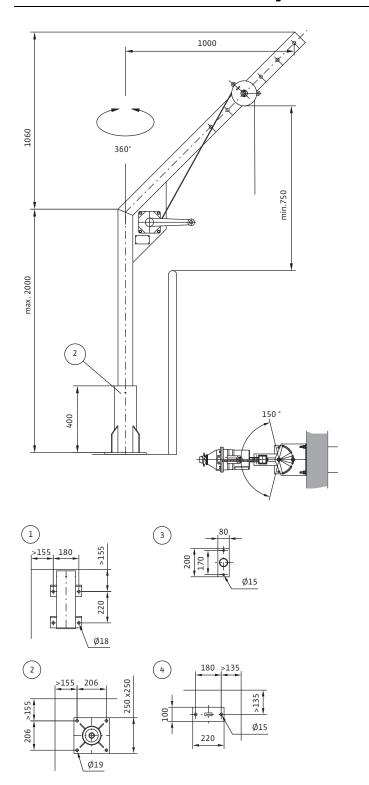

Der Wert $P_{1.1}$ entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P_1 bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³. Schub- und Leistungsmessung gemäß ISO 21630.

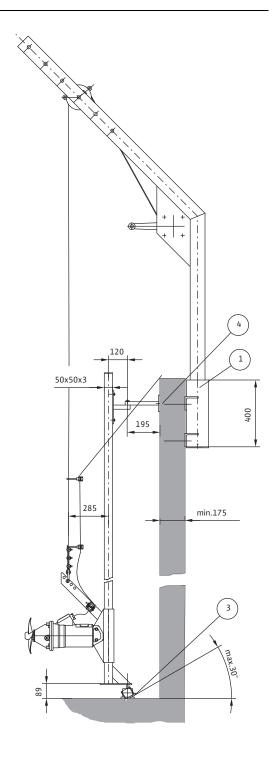

^{• =} vorhanden, - = nicht vorhanden


Rührwerke Miniprop

Einbaubeispiel

Wilo-EMU Rührwerk TR 14 mit Rohrmontage





Einbaubeispiel

Wilo-EMU Rührwerk TR 21 mit Absenkvorrichtung AVU50

Rührwerke Uniprop - direktgetrieben

Baureihenbeschreibung Wilo-EMU Uniprop - direktgetrieben

Bauart

Kompaktes direktgetriebenes Tauchmotor-Rührwerk

Typenschlüssel

z. B.:	Wilo-EMU TR 36.95-6/8 S17
TR	Tauchmotor-Rührwerk
36	x 10 = Propeller-Nenndurchmesser in mm
95	x 10 = Propellerdrehzahl in 1/min
6	Polzahl
8	x 10 = Statorlänge in mm
S17	Propellercode für Schweißpropeller (ohne = PUR- Propeller)

Finsatz

- Verwirbelung von Ablagerungen und Feststoffen in Regenrückhaltebecken und im Pumpensumpf
- Zerstörung von Schwimmschlammdecken
- Weitere Anwendungsbereiche in der Landwirtschaft und Wasserversorgung

Besonderheiten/Produktvorteile

- selbstreinigender Propeller mit Helix-Nabe
- montagefreundliche Propellerbefestigung
- Propeller in Grauguss-, Stahl- oder PUR-Ausführung
- ATEX- und FM-Ausführung

Technische Daten

- Netzanschluss: 3~400 V, 50 Hz
- Betriebsart eingetaucht: S1
- Schutzart: IP 68
- \bullet max. Mediumstemperatur: 40 $^{\circ}\text{C}$
- Gleitringdichtung mit SiC/SiC-Paarung
- dauergeschmierte Wälzlager
- max. Tauchtiefe: 12,5 m

Ausstattung/Funktion

- stationäre Montage an Wand und Boden
- flexible Montage über Absenkvorrichtung
- vertikal und horizontal schwenkbar bei Montage mit Absenkvorrichtung

Werkstoffe

- Gehäuseteile: EN-GJL-250
- Propeller: EN-GJL-250, PUR oder Edelstahl 1.4571
- Propellernabe: Edelstahl 1.4571
- Schraubverbindungen: Edelstahl 1.4301 bzw. 1.4571
- Dichtbuchse: Edelstahl 1.4571

Beschreibung/Konstruktion Propeller

2- oder 3-flügliger Propeller mit einem Propeller-Nenndurchmesser von 220 mm bis 400 mm. Verzopfungsfreie Konstruktion durch rückwärtsgekrümmte Anströmkante und patentierter Helix-Nabe.

Motor

Wilo-Tauchmotor der T-Baureihe mit standardisiertem Anschluss zur einfachen und effizienten Anpassung der Motorleistung. Die Motorwärme wird über das Gehäuse direkt an das Medium abgegeben. Die Wicklung ist mit einer Temperaturüberwachung ausgestattet. Eine hohe Lebensdauer der Motorlagerung wird durch groß dimensionierte Schräg- und Rillenkugellager gewährleistet.

Abdichtuna

Doppelte Wellenabdichtung mit großvolumiger Dichtungskammer zur Aufnahme der Leckage der Gleitringdichtung, auf Wunsch mit externer Dichtraumelektrode. Mediumseitig wird eine korrosionsbeständige und verschleißfeste Gleitringdichtung aus Vollmaterial Sillizium–Karbid eingesetzt, motorseitig ein Radialwellendichtring. Bei den Typen TR 36 / TR 40 gewährleistet eine Dichtbuchse einen dauerhaft korrosionsgeschützten Sitz der Gleitringdichtung.

Kabel

Bei der Stromzuführungsleitung handelt es sich um den Typ NSSHÖU für schwere mechanische Beanspruchungen. Die Stromzuführungs-leitung ist über eine druckwasserdichte Kableinführung mit Zugentlastung und Knickschutz in das Motorgehäuse eingeführt. Die einzelnen Adern sowie der Kabelmantel sind zusätzlich als Flüssigkeitssperre vergossen.

Optionen

- Sonderspannungen
- Kaltleitertemperaturfühler
- externe Dichtraumkontrolle
- Flüssigkeramikbeschichtung Ceram C0
- Ex-Zulassung nach ATEX oder FM

Lieferumfang

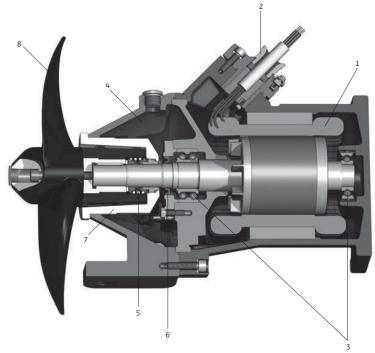
- Tauchmotor-Rührwerk mit montiertem Propeller und Kabel
- Kabellänge nach Kundenwunsch
- Zubehör nach Kundenwunsch
- Betriebs- und Wartungshandbuch

Auslegung

Um ein optimales Ergebnis bei der Strömungserzeugung zu gewährleisten, muss für jeden Anwendungsfall eine separate Auslegung erfolgen. Installieren Sie die Aggregate genau nach den Vorgaben der gelieferten Auslegung.

Rührwerke Uniprop - direktgetrieben

Baureihenbeschreibung Wilo-EMU Uniprop - direktgetrieben

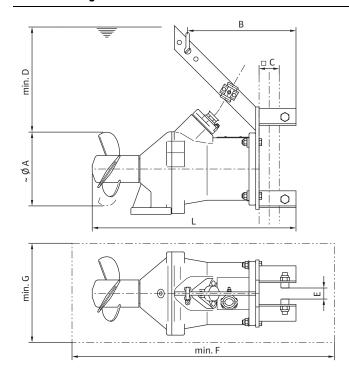

Inbetriebnahme

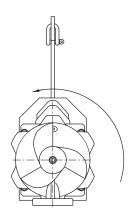
Betriebsart S1 - Dauerbetrieb:

Das Tauchmotor-Rührwerk muss eingetaucht betrieben werden. Ein Austauchen des Propellers ist untersagt. Bei schwankenden Pegelständen muss eine automatische Abschaltung erfolgen, sobald die Mindestwasserüberdeckung unterschritten wird. Die Stromzuführungsleitung ist so zu installieren, dass diese nicht in den Propeller gezogen werden kann!

Zubehör

- Absenkvorrichtung
- Hilfshebevorrichtung
- Bodenbefestigungskonsole
- Spezialbefestigungsteile zur Verwendung einer Hilfshebevorrichtung für mehrere Aggregate
- Klemmanschlag
- zusätzliche Seilabspannung
- Befestigungssätze mit Verbundanker




- 1 = Motor; 2 = Kabeleinführung; 3 = Motorlager, 4 = Dichtungskammer; 5 = mediumseitige Gleitringdichtung; 6 = motorseitiger Radialwellendichtring;
- 7 = Dichtbuchse, 8 = Propeller

Rührwerke Uniprop – direktgetrieben

Maße, Gewichte Wilo-EMU TR 22

Maßzeichnung

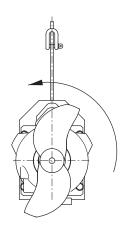
Maße, Gewichte									
Wilo-EMU	Abmessungen								Gewicht
	Α	В	С	D	E	F	G	L	Aggregat
	[mm]							[kg]	
TR 22/8	220	320	60	900	33	755	420	605	70
TR 22/12	220	320	60	900	33	790	420	640	78

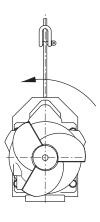
Technische Daten, Motordaten Wilo-EMU TR 22

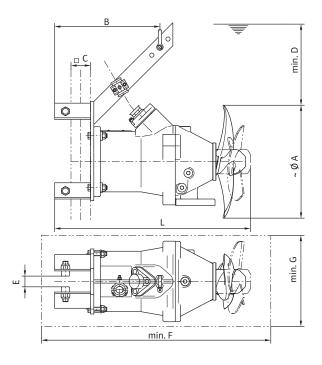
Technische Daten				
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft
	max. P _{1.1}	n	-	F
	[kW]	[1/min]	-	[N]
TR 22.95-6/8	1,3	915	1,000	185
TR 22.145-4/8V	2,2	1400	1,000	310
TR 22.145-4/8	2,8	1410	1,000	350
TR 22.145-4/12	2,7	1405	1,000	350

Motordaten						
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Sch	utz nach
	P ₂	P ₁	I _N	n	FM	ATEX
		[kW]		[1/min]	,	_
T 17-4/8V (Ex)	2,5	3,5	5,9	1400	•	•
T 17-4/8R (Ex)	3,5	4,5	7,9	1410	•	•
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•
T 17-6/8R (Ex)	1,75	2,5	4,45	915	•	•

Der Wert $P_{1,1}$ entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P_1 bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³.


Schub- und Leistungsmessung gemäß ISO 21630.


^{• =} vorhanden, – = nicht vorhanden


Rührwerke Uniprop – direktgetrieben

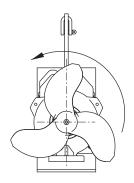
Maße, Gewichte Wilo-EMU TR 36

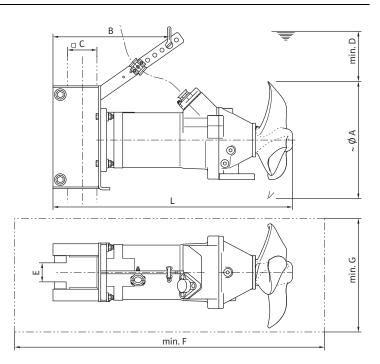
Maßzeichnung

Maße, Gewichte									
Wilo-EMU				Abmes	sungen				Gewicht
	Α	В	С	D	E	F	G	L	Aggregat
	[mm]								[kg]
TR 36/8	360	320	60	500	33	740	560	590	61
TR 36/12	360	350	60	500	33	775	560	625	69
TR 36/8 S	250	320	60	500	33	755	450	605	65
TR 36/16	360	370	80	500	53	835	560	685	80
TR 36/16 S	250	370	80	500	53	850	450	700	84

Technische Daten, Motordaten Wilo-EMU TR 36

Technische Daten				
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft
	max. P _{1.1}	n	-	F
	[kW]	[1/min]	-	[N]
TR 36.74-8/8	0,8	700	1,000	220
TR 36.74-8/8 S21	1,1	700	1,000	210
TR 36.95-6/8	1,4	915	1,000	380
TR 36.95-6/8 S17	1,6	915	1,000	320
TR 36.145-4/12	4,6	1405	1,000	820
TR 36.145-4/12 S12	3,3	1405	1,000	530
TR 36.145-4/12 S17	4,94	1405	1,000	700
TR 36.145-4/16	4,8	1400	1,000	830
TR 36.145-4/16 S17	5,1	1400	1,000	720
TR 36.145-4/16 S21	7	1400	1,000	830


Motordaten						
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Sch	utz nach
	P ₂	P ₁	I _N	n	FM	ATEX
		[kW]	[A]	[1/min]		_
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•
T 17-4/16R (Ex)	6,5	8,2	13,5	1400	•	•
T 17-8/8R (Ex)	1,1	1,67	3,2	700	•	•
T 17-6/8R (Ex)	1,75	2,5	4,45	915	•	•


Der Wert P_{1.1} entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P₁ bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³. Schub- und Leistungsmessung gemäß ISO 21630.

^{• =} vorhanden, - = nicht vorhanden

Rührwerke Uniprop – direktgetrieben

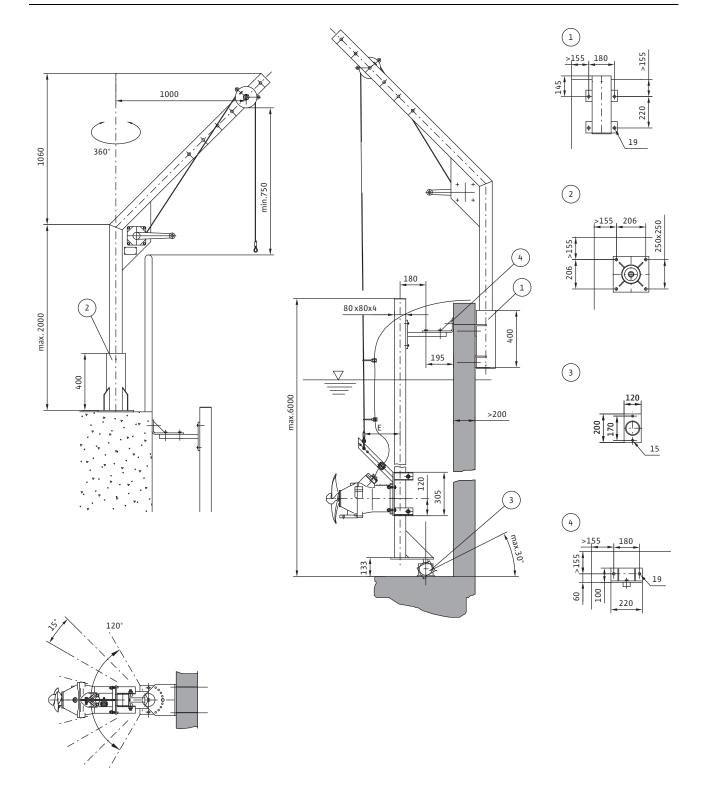
Maße, Gewichte Wilo-EMU TR 40

Maße, Gewichte									
Wilo-EMU		Abmessungen						Gewicht	
	Α	В	С	D	E	F	G	L	Aggregat
				[m	m]				[kg]
TR 40/16	400	355	80	700	45	865	600	715	84
TR 40/24	400	380	80	700	45	945	600	795	93

Technische Daten, Motordaten Wilo-EMU TR 40

Technische Daten				
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft
	max. P _{1.1}	n	-	F
	[kW]	[1/min]	-	[N]
TR 40.74-8/16	2,3	710	1,000	620
TR 40.74-8/24	2,4	705	1,000	630
TR 40.95-6/24	5,2	927	1,000	1100

Motordaten						
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Sch	nutz nach
	P ₂	P ₁	I _N	n	FM	ATEX
		[kW]	[A]	[1/min]		_
T 17-6/24R (Ex)	6	7,7	13,6	927	•	•
T 17-8/16R (Ex)	2,75	3,95	7,4	710	•	•
T 17-8/24R (Ex)	5,1	7,7	14,3	705	•	•

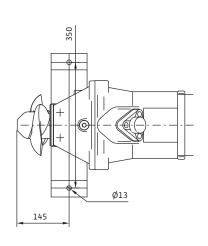

Der Wert $P_{1.1}$ entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P_1 bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³. Schub- und Leistungsmessung gemäß ISO 21630.

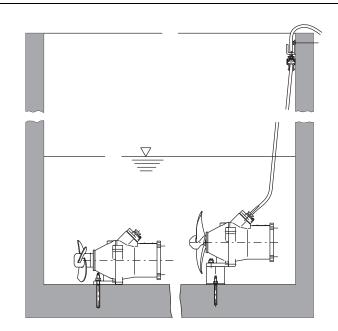
^{• =} vorhanden, - = nicht vorhanden

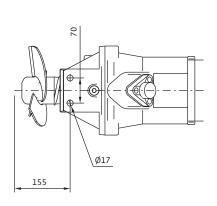
Rührwerke Uniprop – direktgetrieben

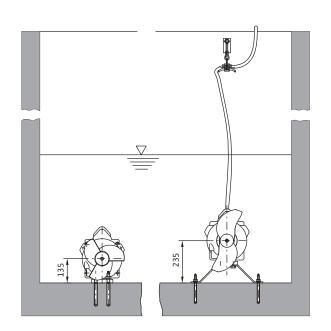
Einbaubeispiel

Wilo-EMU Rührwerk TR 36 mit Absenkvorrichtung AVU80




Rührwerke Uniprop – direktgetrieben




Einbaubeispiel

Wilo-EMU Rührwerk TR 36 als Bodenmontage

Rührwerke Uniprop - mit Getriebe

Baureihenbeschreibung Wilo-EMU Uniprop - mit Getriebe

Bauart

Tauchmotor-Rührwerk mit 1-stufigen Planetengetriebe

Typenschlüssel

z. B.:	Wilo-EMU TR 80-1.30-4/30 S20
TR	Tauchmotor-Rührwerk
80	x 10 = Propeller-Nenndurchmesser in mm
1	Baumuster
30	x 10 = Propellerdrehzahl in 1/min
4	Polzahl
30	x 10 = Statorlänge in mm
S20	Propellercode für Schweißpropeller (ohne = PUR- Propeller)

Einsatz

Einsatz in Belebungsbecken und Schlammbehältern zur:

- Strömungserzeugung
- Suspension von Feststoffen
- Homogenisierung
- Verhinderung von Schwimmschlammdecken
- Weitere Anwendungsbereiche in der Industrie, Landwirtschaft und Wasserversorgung

Besonderheiten/Produktvorteile

- 1-stufiges Planetengetriebe zur Anpassung der Propellerdrehzahl
- selbstreinigender Propeller
- montagefreundliche Propellerbefestigung
- Propeller in Stahl-, PUR- oder PUR/GFK-Ausführung
- ATEX- und FM-Ausführung
- Getriebewelle in 1.4462

Technische Daten

- Netzanschluss: 3~400 V, 50 Hz
- Betriebsart eingetaucht: S1
- Schutzart: IP 68
- \bullet max. Mediumstemperatur: 40 $^{\circ}\text{C}$
- 1-stufiges Planetengetriebe
- Gleitringdichtung mit SiC/SiC-Paarung
- dauergeschmierte Wälzlager
- max. Tauchtiefe: 12,5 m

Ausstattung/Funktion

- stationäre Montage an der Wand
- flexible Montage über Absenkvorrichtung
- horizontal schwenkbar bei Montage mit Absenkvorrichtung
- frei im Becken platzierbar bei Montage über Stativeinheit
- 1-stufiges Planetengetriebe

Werkstoffe

- Gehäuseteile: EN-GJL-250
- Propeller: PUR, Stahl 1.0037, Edelstahl 1.4571 oder PUR/GfK
- Propellernabe: Edelstahl 1.4571
- Schraubverbindungen: Edelstahl 1.4301 bzw. 1.4571
- Dichtbuchse: Edelstahl 1.4571
 Getriebewelle: Edelstahl 1.4462

Beschreibung/Konstruktion Propeller

2- oder 3-flügliger Propeller mit einem Propeller-Nenndurchmesser von 500 mm bis 900 mm. Verzopfungsfreie Konstruktion durch rückwärtsgekrümmte Anströmkante.

Motor

Wilo-Tauchmotor der T-Baureihe mit standardisiertem Anschluss zur einfachen und effizienten Anpassung der Motorleistung. Die Motorwärme wird über das Gehäuse direkt an das Medium abgegeben. Die Wicklung ist mit einer Temperaturüberwachung ausgestattet. Eine hohe Lebensdauer der Motorlagerung wird durch groß dimensionierte Schräg- (nicht bei TR 80-1) und Rillenkugellager gewährleistet.

Abdichtung

Die Abdichtung wird über ein 3-Kammer-System (Vorkammer, Getriebekammer und Dichtungskammer) gewährleistet. Die großvolumige Vor- und Dichtungskammer nehmen hierbei die Leckage der Gleitringdichtung auf. Auf Wunsch kann die Vorkammer mit einer externen Dichtraumelektrode ausgestattet werden. Die Abdichtung zwischen Medium und Vorkammer sowie Getriebe- und Dichtungskammer erfolgt durch eine korrosionsbeständige und verschleißfeste Gleitringdichtung aus Vollmaterial Sillizium-Karbid. Die Abdichtung zwischen Vor- und Getriebekammer sowie Dichtungskammer und Motor erfolgt durch Radialdichtringe. Eine Dichtbuchse gewährleistet einen dauerhaft korrosionsgeschützten Sitz der Gleitringdichtung.

Getriebe

1-stufiges Planetengetriebe mit austauschbaren Übersetzungen. Die Getriebelager sind so dimensioniert, dass die resultierenden Rührkräfte absorbiert und nicht an die Motorlagerung weitergegeben werden.

Kabel

Bei der Stromzuführungsleitung handelt es sich um den Typ NSSHÖU für schwere mechanische Beanspruchungen. Die Stromzuführungs-leitung ist über eine druckwasserdichte Kableinführung mit Zugent-lastung und Knickschutz in das Motorgehäuse eingeführt. Die einzelnen Adern sowie der Kabelmantel sind zusätzlich als Flüssigkeitssperre vergossen.

Rührwerke Uniprop - mit Getriebe

Baureihenbeschreibung Wilo-EMU Uniprop - mit Getriebe

Optionen

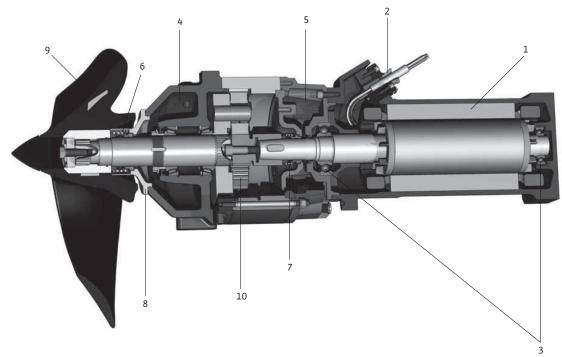
- Sonderspannungen
- Kaltleitertemperaturfühler
- externe Dichtraumkontrolle
- Flüssigkeramikbeschichtung Ceram C0
- Ex-Zulassung nach ATEX oder FM

Lieferumfang

- Tauchmotor-Rührwerk mit montiertem Propeller und Kabel
- Kabellänge nach Kundenwunsch
- Zubehör nach Kundenwunsch
- Betriebs- und Wartungshandbuch

Auslegung

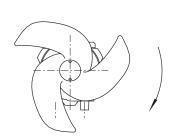
Um ein optimales Ergebnis bei der Strömungserzeugung zu gewährleisten, muss für jeden Anwendungsfall eine separate Auslegung erfolgen. Installieren Sie die Aggregate genau nach den Vorgaben der gelieferten Auslegung.

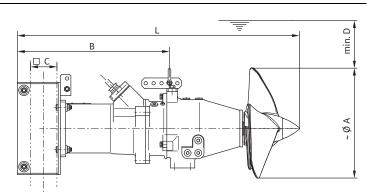

Inbetriebnahme

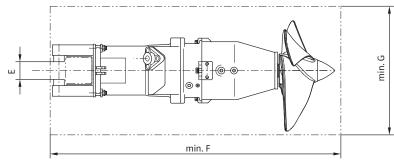
Betriebsart S1 - Dauerbetrieb:

Das Tauchmotor-Rührwerk muss eingetaucht betrieben werden. Ein Austauchen des Propellers ist untersagt. Bei schwankenden Pegelständen muss eine automatische Abschaltung erfolgen, sobald die Mindestwasserüberdeckung unterschritten wird. Die Stromzuführungsleitung ist so zu installieren, dass diese nicht in den Propeller gezogen werden kann!

Zubehör


- Absenkvorrichtung
- Stativeinheit zur freien Positionierung der Aggregate im Becken
- · Hilfshebevorrichtung
- Spezialbefestigungsteile zur Verwendung einer Hilfshebevorrichtung für mehrere Aggregate
- Klemmanschlag
- zusätzliche Seilabspannung
- Befestigungssätze mit Verbundanker




1 = Motor; 2 = Kabeleinführung; 3 = Motorlager, 4 = Vorkammer; 5 = Dichtungskammer; 6 = mediumseitige Gleitringdichtung; 7 = motorseitige Gleitringdichtung; 8 = Dichtbuchse, 9 = Propeller; 10 = 1-stufiges Planetengetriebe

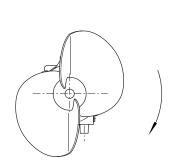
Rührwerke Uniprop – mit Getriebe

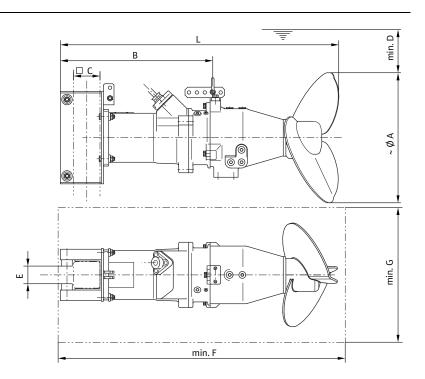
Maße, Gewichte Wilo-EMU TR 50-2 (PUR)

Maße, Gewichte									
Wilo-EMU	. Abmessungen							Gewicht	
	Α	В	С	D	E	F	G	L	Aggregat
				[m	m]				[kg]
TR 50-2/8	500	445	100	900	65	1145	700	1005	102
TR 50-2/12	500	480	100	900	65	1180	700	1040	110
TR 50-2/16	500	490	100	900	65	1220	700	180	121
TR 50-2/22	500	525	100	900	65	1300	700	1160	129

Technische Daten, Motordaten Wilo-EMU TR 50-2 (PUR)

Technische Daten				
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft
	max. P _{1.1}	n	-	F
	[kW]	[1/min]	-	[N]
TR 50-2.25-6/8	1	250	3,880	350
TR 50-2.25-6/16	1,2	250	3,880	350
TR 50-2.28-6/8	1,4	288	3,364	440
TR 50-2.29-6/8	1,6	292	3,167	490
TR 50-2.30-4/8	1,6	299	4,900	500
TR 50-2.30-4/8V	1,6	298	4,900	500
TR 50-2.30-6/8	1,8	306	3,000	540
TR 50-2.31-4/8	1,7	312	4,714	520
TR 50-2.31-4/8V	1,7	312	4,714	520
TR 50-2.34-4/8	2,2	345	4,250	620
TR 50-2.34-4/8V	2,2	344	4,250	640
TR 50-2.37-4/8	2,6	372	3,880	720
TR 50-2.37-4/8V	2,8	371	3,880	750
TR 50-2.42-4/12	3,9	428	3,364	930
TR 50-2.43-4/16	3,9	434	3,364	1000
TR 50-2.45-4/12	4,5	452	3,167	1020
TR 50-2.46-4/16	4,5	458	3,167	1110
TR 50-2.48-4/16	5,2	479	3,000	1240
TR 50-2.52-2/22	6,6	528	5,590	1400
TR 50-2.55-2/22	7,5	552	5,330	1570
TR 50-2.59-2/22	9,2	598	4,900	1740


Motordaten							
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schutz nach		
	P ₂	P ₁	I _N	n	FM	ATEX	
		[kW]	[A]	[1/min]		_	
T 17-2/22R (Ex)	10,5	12,3	20,5	2914	•	•	
T 17-4/8R (Ex)	3,5	4,5	7,9	1410	•	•	
T 17-4/8V (Ex)	2,5	3,5	5,9	1400	•	•	
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•	
T 17-4/16R (Ex)	6,5	8,2	13,5	1400	•	•	
T 17-6/8R (Ex)	1,75	2,5	4,45	915	•	•	
T 17-6/16R (Ex)	3,7	5,2	9,1	931	•	•	


Der Wert $P_{1.1}$ entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P_1 bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³. Schub- und Leistungsmessung gemäß ISO 21630.

^{• =} vorhanden, - = nicht vorhanden

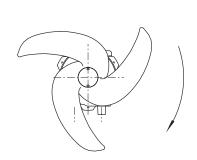
Rührwerke Uniprop – mit Getriebe

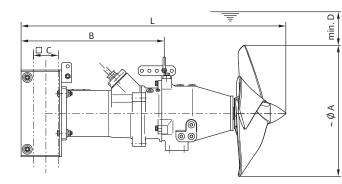
Maße, Gewichte Wilo-EMU TR 50-2 (St.)

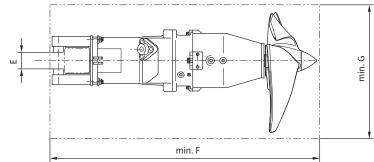
Maße, Gewichte									
Wilo-EMU	Abmessungen							Gewicht	
	Α	В	С	D	E	F	G	L	Aggregat
				[m	m]				[kg]
TR 50-2/8 S	500	505	100	900	65	1135	700	1005	110
TR 50-2/12 S	500	510	100	900	65	1170	700	1040	118
TR 50-2/16 S	500	520	100	900	65	1210	700	1080	129
TR 50-2/24 S	500	555	100	900	65	1290	700	1160	138

Technische Daten, Motordaten Wilo-EMU TR 50-2 (St.)

Technische Daten				
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft
	max. P _{1.1}	n	-	F
	[kW]	[1/min]	-	[N]
TR 50-2.22-6/8 S	1,5	229	4,250	450
TR 50-2.24-6/8 S	1,9	247	3,880	540
TR 50-2.25-4/8V S	2	251	5,875	530
TR 50-2.28-4/8V S	3,2	296	4,900	790
TR 50-2.30-4/8 S	3,4	306	4,714	800
TR 50-2.31-4/12 S	3,4	309	4,714	830
TR 50-2.34-4/12 S	4,4	338	4,250	970
TR 50-2.34-4/16 S	4,5	344	4,250	1010
TR 50-2.37-4/16 S	5,6	373	3,880	1170
TR 50-2.37-4/24 S	6,2	379	3,880	1270
TR 50-2.40-4/16 S	7	399	3,600	1350
TR 50-2.40-4/24 S	7,4	406	3,600	1430
TR 50-2.43-4/24 S	8,9	433	3,364	1600
TR 50-2.45-4/24 S	10,6	453	3,167	1800
TR 50-2.47-4/24 S	11,9	475	3,000	1920


Motordaten							
Wilo-EMU	Motornenn- leistung Leistungsaufnahme		Nennstrom	Nenndrehzahl	Ex-Sch	utz nach	
	P ₂	P ₁	I _N	n	FM	ATEX	
		[kW]	[A]	[1/min]		_	
T 17-4/8R (Ex)	3,5	4,5	7,9	1410	•	•	
T 17-4/8V (Ex)	2,5	3,5	5,9	1400	•	•	
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•	
T 17-4/16R (Ex)	6,5	8,2	13,5	1400	•	•	
T 17-4/24R (Ex)	10	12,2	21	1417	•	•	
T 17-6/8R (Ex)	1,75	2,5	4,45	915	•	•	


Der Wert P_{1,1} entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P₁ bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³. Schub- und Leistungsmessung gemäß ISO 21630.


 $[\]bullet$ = vorhanden, – = nicht vorhanden

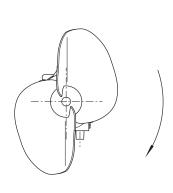
Rührwerke Uniprop – mit Getriebe

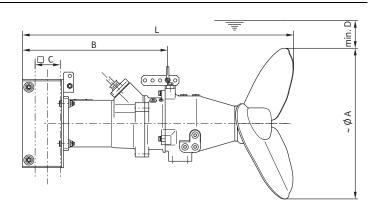
Maße, Gewichte Wilo-EMU TR 60-2 (PUR)

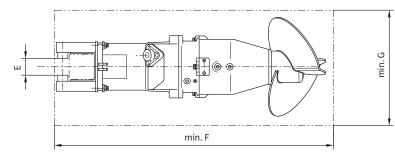
Maße, Gewichte									
Wilo-EMU	Abmessungen								Gewicht
	Α	В	С	D	E	F	G	L	Aggregat
				[n	nm]				[kg]
TR 60-2/8	600	445	100	900	65	1145	800	1005	103
TR 60-2/12	600	480	100	900	65	1180	800	1040	111
TR 60-2/16	600	490	100	900	65	1220	800	1080	122
TR 60-2/22	600	525	100	900	65	1300	800	1160	130
TR 60-2/24	600	525	100	900	65	1300	800	1160	130

Technische Daten, Motordaten Wilo-EMU TR 60-2 (PUR)

Technische Daten				
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft
	max. P _{1.1}	n	-	F
	[kW]	[1/min]	-	[N]
TR 60-2.23-6/8	1,2	229	4,250	510
TR 60-2.25-6/8	1,4	250	3,880	580
TR 60-2.29-6/8	2,1	288	3,364	760
TR 60-2.30-4/8	2,3	297	4,900	840
TR 60-2.30-4/8V	2,2	297	4,900	820
TR 60-2.31-4/8V	2,4	308	4,714	880
TR 60-2.33-4/8	3,3	337	4,250	1070
TR 60-2.34-4/12	3,2	341	4,250	1060
TR 60-2.37-4/12	3,9	367	3,880	1220
TR 60-2.38-4/12	4,9	389	3,600	1430
TR 60-2.38-4/16	4	373	3,880	1300
TR 60-2.41-4/16	4,8	400	3,600	1450
TR 60-2.41-4/24	5	405	3,600	1450
TR 60-2.43-4/16	5,8	424	3,364	1670
TR 60-2.43-4/24	5,8	430	3,364	1610
TR 60-2.46-4/24	6,9	460	3,167	1830
TR 60-2.48-4/24	7,7	480	3,000	1950
TR 60-2.49-2/22	8,5	497	5,875	2150
TR 60-2.52-2/22	9,6	520	5,590	2280


Motordaten							
Wilo-EMU	Motornenn- leistung Leistungsaufnahme		Nennstrom	Nenndrehzahl	Ex-Schutz nach		
	P ₂	P ₁	I _N	n	FM	ATEX	
		[kW]	[A]	[1/min]		-	
T 17-2/22R (Ex)	10,5	12,3	20,5	2914	•	•	
T 17-4/8R (Ex)	3,5	4,5	7,9	1410	•	•	
T 17-4/8V (Ex)	2,5	3,5	5,9	1400	•	•	
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•	
T 17-4/16R (Ex)	6,5	8,2	13,5	1400	•	•	
T 17-4/24R (Ex)	10	12,2	21	1417	•	•	
T 17-6/8R (Ex)	1,75	2,5	4,45	915	•	•	


Der Wert $P_{1.1}$ entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P_1 bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³. Schub- und Leistungsmessung gemäß ISO 21630.


^{• =} vorhanden, - = nicht vorhanden

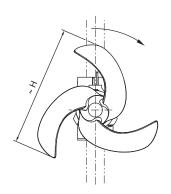
Rührwerke Uniprop – mit Getriebe

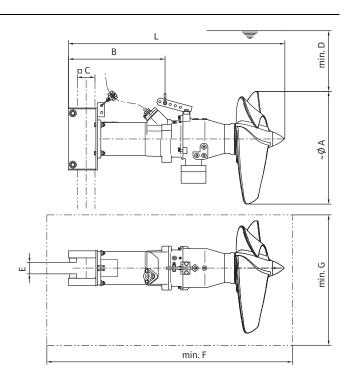
Maße, Gewichte Wilo-EMU TR 60-2 (St.)

Maße, Gewichte									
Wilo-EMU				Abmes	sungen				Gewicht
	A B C D E F G L							Aggregat	
				[m	m]				[kg]
TR 60-2/8 S	600	505	100	900	65	1155	800	1005	112
TR 60-2/12 S	600	510	100	900	65	1190	800	1040	120
TR 60-2/16 S	600	520	100	900	65	1230	800	1080	131
TR 60-2/24 S	600	555	100	900	65	1310	800	1160	140

Technische Daten, Motordaten Wilo-EMU TR 60-2 (St.)

Technische Daten				
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft
	max. P _{1.1}	n	-	F
	[kW]	[1/min]	-	[N]
TR 60-2.19-6/8 S	2,2	195	4,714	650
TR 60-2.22-4/8V S	2,8	221	6,571	810
TR 60-2.23-4/8 S	3,4	234	6,200	920
TR 60-2.24-4/8 S	3,8	245	5,875	950
TR 60-2.24-4/12 S	3,7	245	5,875	980
TR 60-2.25-4/12 S	4,5	256	5,590	1140
TR 60-2.26-4/16 S	4,3	260	5,590	1070
TR 60-2.27-4/16 S	5	272	5,330	1220
TR 60-2.29-4/16 S	6	293	4,900	1340
TR 60-2.30-4/16 S	6,8	303	4,714	1460
TR 60-2.30-4/24 S	6,3	300	4,900	1370
TR 60-2.31-4/24 S	7,3	310	4,714	1500
TR 60-2.34-4/24 S	9,5	340	4,250	1860


Motordaten						
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Sch	utz nach
	P ₂	P ₁	I _N	n	FM	ATEX
		[kW]	[A]	[1/min]	_	
T 17-4/8R (Ex)	3,5	4,5	7,9	1410	•	•
T 17-4/8V (Ex)	2,5	3,5	5,9	1400	•	•
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•
T 17-4/16R (Ex)	6,5	8,2	13,5	1400	•	•
T 17-4/24R (Ex)	10	12,2	21	1417	•	•
T 17-6/8R (Ex)	1,75	2,5	4,45	915	•	•


Der Wert P_{1.1} entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P₁ bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³. Schub- und Leistungsmessung gemäß ISO 21630.

^{• =} vorhanden, - = nicht vorhanden

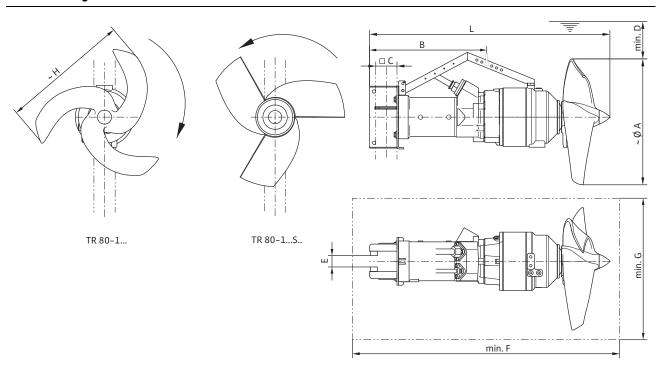
Rührwerke Uniprop – mit Getriebe

Maße, Gewichte Wilo-EMU TR 75-2

Maße, Gewichte										
Wilo-EMU		Abmessungen								Gewicht
	Α	В	С	D	E	F	G	Н	L	Aggregat
					[mm]					[kg]
TR 75-2/16	750	490	100	1100	65	1290	950	650	1140	127
TR 75-2/24	750	525	100	1100	65	1370	950	650	1220	135

Technische Daten, Motordaten Wilo-EMU TR 75-2

Technische Daten				
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft
	max. P _{1.1}	n	-	F
	[kW]	[1/min]	-	[N]
TR 75-2.15-6/16	3	156	6,200	1145
TR 75-2.16-6/16	3,5	163	5,875	1220
TR 75-2.17-6/16	3,8	170	5,590	1275
TR 75-2.18-6/16	4,3	176	5,330	1350
TR 75-2.19-4/16	5,1	193	7,500	1630
TR 75-2.19-4/24	5,3	197	7,500	1660
TR 75-2.19-6/24	5,4	194	4,900	1660
TR 75-2.20-6/24	6	201	4,714	1800
TR 75-2.21-4/16	7,2	217	6,571	1980
TR 75-2.21-4/24	7,5	219	6,571	2140
TR 75-2.23-4/24	8,6	233	6,200	2310
TR 75-2.24-4/24	9,9	244	5,875	2410
TR 75-2.25-4/24	10,8	254	5,590	2850


Motordaten						
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Sch	utz nach
	P ₂	P ₁	I _N	n	FM	ATEX
	[kW]		[A]	[1/min]		_
T 17-4/16R (Ex)	6,5	8,2	13,5	1400	•	•
T 17-4/24R (Ex)	10	12,2	21	1417	•	•
T 17-6/16R (Ex)	3,7	5,2	9,1	931	•	•
T 17-6/24R (Ex)	6	7,7	13,6	927	•	•

Der Wert P_{1.1} entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P₁ bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³. Schub- und Leistungsmessung gemäß ISO 21630.

• = vorhanden, - = nicht vorhanden

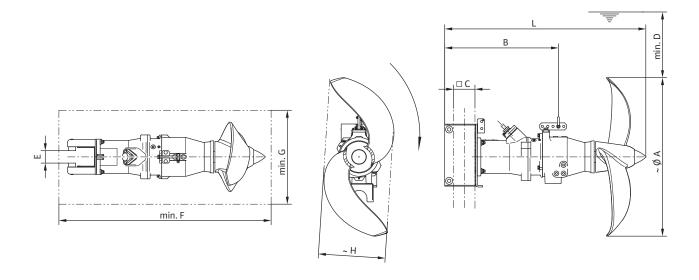
Rührwerke Uniprop – mit Getriebe

Maße, Gewichte Wilo-EMU TR 80-1

Maße, Gewichte										
Wilo-EMU	Abmessungen									Gewicht
	Α	В	С	D	E	F	G	Н	L	Aggregat
					[mm]					[kg]
TR 80-1/22	740	595	120	1100	55	1535	985	730	1385	284
TR 80-1/22	785	595	120	1100	55	1535	985	730	1385	316
TR 80-1/27	740	675	120	1100	55	1585	985	730	1435	298
TR 80-1/30	740	675	120	1100	55	1585	985	730	1435	303
TR 80-1/30	785	675	120	1100	55	1585	985	730	1435	321

Technische Daten, Motordaten Wilo-EMU TR 80-1

Technische Daten				
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft
	max. P _{1.1}	n	-	F
	[kW]	[1/min]	-	[N]
TR 80-1.20-4/22	6,9	204	7,000	1910
TR 80-1.21-4/22 S20	6,1	205	7,000	1670
TR 80-1.23-4/22 S20	9	239	6,000	2220
TR 80-1.23-4/27	10,5	239	6,000	2520
TR 80-1.23-4/30	10,8	240	6,000	2610
TR 80-1.24-4/22	10,4	238	6,000	2600
TR 80-1.24-4/30 S20	9,6	239	6,000	2350
TR 80-1.26-4/22	14,9	269	5,286	3320
TR 80-1.27-4/22 S20	12,4	267	5,286	2680
TR 80-1.27-4/27	15,1	272	5,286	3320
TR 80-1.27-4/30	15,1	274	5,286	3380
TR 80-1.27-4/30 S20	13,2	270	5,286	2870
TR 80-1.30-4/30	20,1	301	4,750	3940
TR 80-1.30-4/30 S20	16,9	301	4,750	3430


Motordaten									
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Sch	utz nach			
	P ₂	P ₁	I _N	n	FM	ATEX			
	[kW]		[A]	[1/min]		-			
T 20-4/22R (Ex)	12,5	15,3	26	1430	•	•			
T 20-4/27R (Ex)	16	18,9	32	1430	•	•			
T 20-4/30R (Ex)	18,5	22	36,5	1435	•	•			
T 20-6/27R (Ex)	11,5	14,1	24,5	930	•	•			
T 20-6/32R (Ex)	12,5	14,9	26	930	•	•			

Der Wert P_{1,1} entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P₁ bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³. Schub- und Leistungsmessung gemäß ISO 21630.

^{• =} vorhanden, - = nicht vorhanden

Rührwerke Uniprop – mit Getriebe

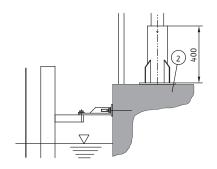
Maße, Gewichte Wilo-EMU TR 90-2

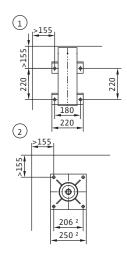
Maße, Gewichte										
Wilo-EMU	Abmessungen								Gewicht	
	Α	В	С	D	E	F	G	Н	L	Aggregat
					[mm]					[kg]
TR 90-2/8	900	445	100	1100	65	1230	575	375	1080	107
TR 90-2/12	900	480	100	1100	65	1265	575	375	1115	117

Technische Daten, Motordaten Wilo-EMU TR 90-2

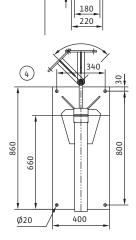
Technische Daten				
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft
	max. P _{1.1}	n	-	F
	[kW]	[1/min]	-	[N]
TR 90-2.9-8/8	0,7	98	7,500	430
TR 90-2.11-8/8	1,1	116	6,200	570
TR 90-2.12-6/8	1,2	129	7,500	730
TR 90-2.12-8/8	1,3	126	5,590	690
TR 90-2.14-6/8	1,5	145	6,751	860
TR 90-2.15-6/8	1,7	153	6,200	960
TR 90-2.16-6/8	2,2	166	5,590	1100
TR 90-2.19-4/8	2,9	193	7,500	1390
TR 90-2.19-4/8V	3	192	7,500	1390
TR 90-2.21-4/8	3,9	215	6,571	1690
TR 90-2.21-4/12	3,7	219	6,571	1750
TR 90-2.23-4/12	4,2	230	6,200	1830

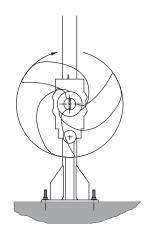
Motordaten										
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	ufnahme Nennstrom Nenndrehzahl		Ex-Sch	Ex-Schutz nach				
	P ₂	P ₁	I _N	n	FM	ATEX				
	[kW]		[A]	[1/min]		-				
T 17-4/8R (Ex)	3,5	4,5	7,9	1410	•	•				
T 17-4/8V (Ex)	2,5	3,5	5,9	1400	•	•				
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•				
T 17-6/8R (Ex)	1,75	2,5	4,45	915	•	•				
T 17-8/8R (Ex)	1,1	1,67	3,2	700	•	•				

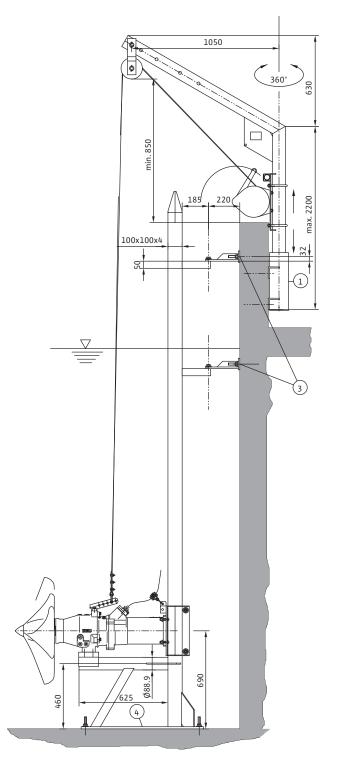

Der Wert P_{1.1} entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P₁ bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³. Schub- und Leistungsmessung gemäß ISO 21630.


• = vorhanden, - = nicht vorhanden

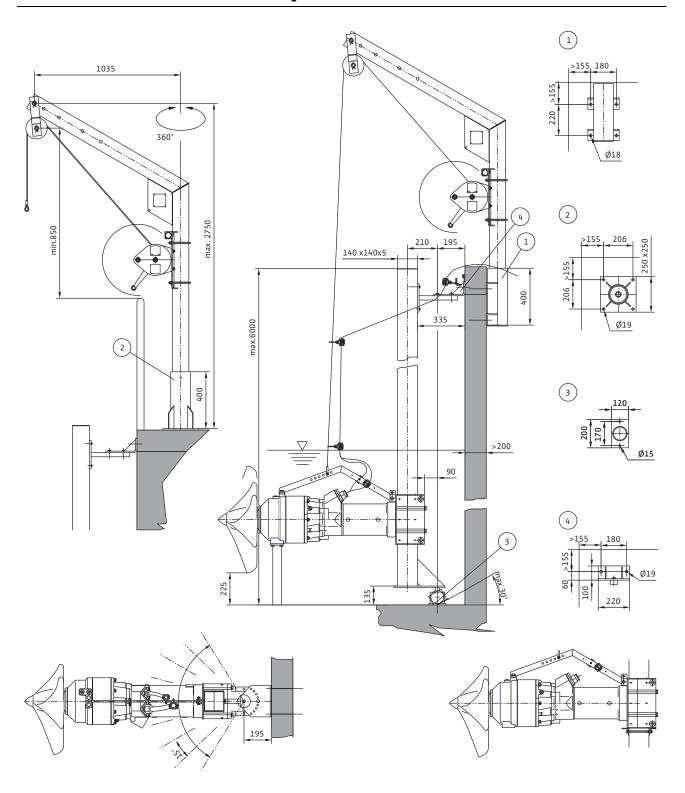
Rührwerke Uniprop – mit Getriebe


Einbaubeispiel


Wilo-EMU Rührwerk TR 75-2 mit Absenkvorrichtung AVUSHH



>155



Einbaubeispiel

Wilo-EMU Rührwerk TR 80-1 mit Absenkvorrichtung AVU140

Rührwerke Maxiprop/Megaprop

Baureihenbeschreibung Wilo-EMU Maxiprop/Megaprop

Bauar

Langsam laufendes, durch 2-stufiges Planetengetriebe untersetztes, Tauchmotor-Rührwerk

Typenschlüssel

z. B.:	Wilo-EMU TR 321.23-8/8
TR	Tauchmotor-Rührwerk
3	Flügelanzahl
21	x 100 = Propeller-Nenndurchmesser in mm
23	Propellerdrehzahl in 1/min
8	Polzahl
8	x 10 = Statorlänge in mm

Einsatz

- energetisch optimiertes Durchmischen und Umwälzen von Belebtschlämmen
- Erzeugung von Strömungsgeschwindigkeiten in Umlaufkanälen
- Weitere Anwendungsbereiche in der Industrie

Besonderheiten/Produktvorteile

- 2-stufiges Planetengetriebe zur Anpassung der Propellerdrehzahl
- selbstreinigender Propeller
- Propellerflügel einzeln austauschbar
- montagefreundliche Flügel- und Nabenbefestigung
- Propeller in GFK-Ausführung
- ATEX- und FM-Ausführung
- Getriebewelle in 1.4462

Technische Daten

- Netzanschluss: 3~400 V, 50 Hz
- Betriebsart eingetaucht: S1
- Schutzart: IP 68
- max. Mediumstemperatur: 40 °C
- 2-stufiges Planetengetriebe mit austauschbarer 2. Planetenstufe
- Gleitringdichtung mit SiC/SiC-Paarung
- dauergeschmierte Wälzlager
- max. Tauchtiefe: 12,5 m

Ausstattung/Funktion

• freie Platzierung im Becken durch Montage über Stativeinheit

- flexible Installation
- 2-stufiges Planetengetriebe mit austauschbarer 2. Planetenstufe

Werkstoffe

Gehäuseteile: EN-GJL-250Propellerflügel: GfK

• Propellernabe: EN-GJS-400

• Schraubverbindungen: Edelstahl 1.4571

Dichtbuchse: Edelstahl 1.4571
Getriebewelle: Edelstahl 1.4462

Beschreibung/Konstruktion Propeller

2- oder 3-flügliger Propeller mit einem Propeller-Nenndurchmesser von 1500 mm bis 2600 mm. Verzopfungsfreie Konstruktion durch rückwärtsgekrümmte Anströmkante.

Motor

Wilo-Tauchmotor der T-Baureihe mit standardisiertem Anschluss zur einfachen und effizienten Anpassung der Motorleistung. Die Motorwärme wird über das Gehäuse direkt an das Medium abgegeben. Die Wicklung ist mit einer Temperaturüberwachung ausgestattet. Eine lange Lebensdauer der Motorlager wird durch groß dimensionierte Schräg- und Rillenkugellager gewährleistet.

Abdichtung

Die Abdichtung wird über ein 3-Kammer-System (Vorkammer, Getriebekammer und Dichtungskammer) gewährleistet. Die großvolumige Vor- und Dichtungskammer nehmen hierbei die Leckage der Gleitringdichtung auf. Auf Wunsch kann die Vorkammer mit einer externen Dichtraumelektrode ausgestattet werden. Die Abdichtung zwischen Medium und Vorkammer sowie Getriebe- und Dichtungskammer erfolgt durch eine korrosionsbeständige und verschleißfeste Gleitringdichtung aus Vollmaterial Sillizium-Karbid. Die Abdichtung zwischen Vor- und Getriebekammer sowie Dichtungskammer und Motor erfolgt durch Radialdichtringe. Eine Dichtbuchse gewährleistet einen dauerhaft korrosionsgeschützten Sitz der Gleitringdichtung.

Getriebe

2-stufiges Planetengetriebe mit austauschbaren Übersetzungen. Die Getriebelager sind so dimensioniert, dass die resultierenden Rührkräfte absorbiert und nicht an die Motorlagerung weitergegeben werden.

Kabel

Bei der Stromzuführungsleitung handelt es sich um den Typ NSSHÖU für schwere mechanische Beanspruchungen. Die Stromzuführungs-leitung ist über eine druckwasserdichte Kableinführung mit Zugentlastung und Knickschutz in das Motorgehäuse eingeführt. Die einzelnen Adern sowie der Kabelmantel sind zusätzlich als Flüssigkeitssperre vergossen.

Optionen

- Sonderspannungen
- Kaltleitertemperaturfühler
- externe Dichtraumkontrolle
- Flüssigkeramikbeschichtung Ceram C0
- Ex-Zulassung nach ATEX oder FM

Rührwerke Maxiprop/Megaprop

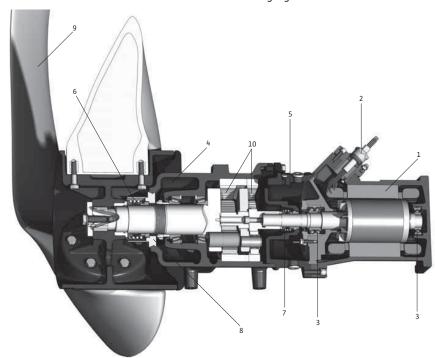
Baureihenbeschreibung Wilo-EMU Maxiprop/Megaprop

Lieferumfang

- Tauchmotor-Rührwerk mit montierter Propellernabe und Kabel
- Kabellänge nach Kundenwunsch
- 2 oder 3 Flügel lose geliefert, Montage erfolgt vor Ort.
- Zubehör nach Kundenwunsch
- Betriebs- und Wartungshandbuch

Auslegung

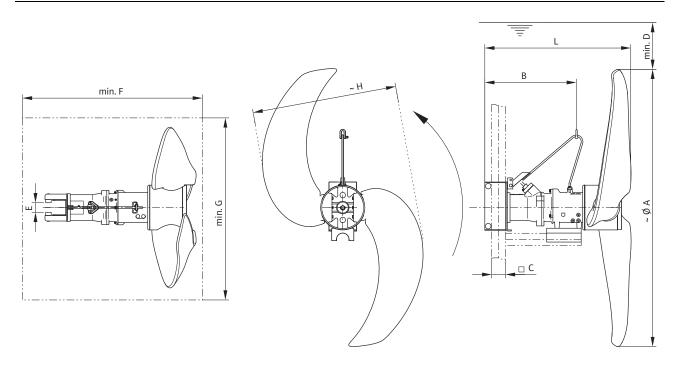
Um ein optimales Ergebnis bei der Strömungserzeugung zu gewährleisten, muss für jeden Anwendungsfall eine separate Auslegung erfolgen. Installieren Sie die Aggregate genau nach den Vorgaben der gelieferten Auslegung.

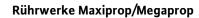

Inbetriebnahme

Betriebsart S1 - Dauerbetrieb:

Das Tauchmotor-Rührwerk muss eingetaucht betrieben werden. Ein Austauchen des Propellers ist untersagt. Bei schwankenden Pegelständen muss eine automatische Abschaltung erfolgen, sobald die Mindestwasserüberdeckung unterschritten wird. Die Stromzuführungsleitung ist so zu installieren, dass diese nicht in den Propeller gezogen werden kann!

Zubehör


- Stativeinheit zur freien Positionierung der Aggregate im Becken
- Hilfshebevorrichtung
- Spezialbefestigungsteile zur Verwendung einer Hilfshebevorrichtung für mehrere Aggregate
- zusätzliche Seilabspannung
- Befestigungssätze mit Verbundanker


1 = Motor; 2 = Kabeleinführung; 3 = Motorlager, 4 = Vorkammer; 5 = Dichtungskammer; 6 = mediumseitige Gleitringdichtung; 7 = motorseitige Gleitringdichtung; 8 = Dichtbuchse, 9 = Propellerflügel; 10 = 2-stufiges Planetengetriebe

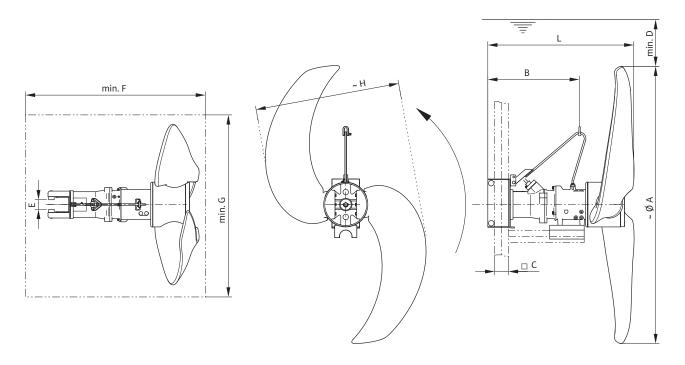
Rührwerke Maxiprop/Megaprop

Maße, Gewichte Wilo-EMU TR 215

Maße, Gewichte										
Wilo-EMU	Abmessungen								Gewicht	
	Α	В	С	D	E	F	G	Н	L	Aggregat
					[mm]					[kg]
TR 215/8	1500	650	100	800	65	1305	1000	800	1155	172
TR 215/12	1500	650	100	800	65	1340	1000	800	1190	182

Technische Daten, Motordaten Wilo-EMU TR 215

Technische Daten				
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft
	max. P _{1.1}	n	-	F
	[kW]	[1/min]	-	[N]
TR 215.17-6/8	0,6	17	56,250	300
TR 215.19-6/8	0,6	19	49,283	450
TR 215.21-6/8	0,6	21	46,500	500
TR 215.22-6/8	0,7	22	44,063	560
TR 215.23-6/8	0,7	23	41,925	600
TR 215.24-6/8	0,8	24	39,975	630
TR 215.26-4/8V	0,9	26	56,250	700
TR 215.29-4/8V	1,1	29	49,283	850
TR 215.31-4/8V	1,3	31	46,500	900
TR 215.33-4/8V	1,5	33	44,063	1000
TR 215.34-4/8V	1,7	34	41,925	1100
TR 215.36-4/8V	2	36	39,975	1200
TR 215.39-4/8V	2,3	39	36,750	1360
TR 215.40-4/8	2,5	40	35,355	1420
TR 215.40-4/8V	2,5	40	35,355	1420
TR 215.44-4/8	3,3	44	31,875	1700
TR 215.53-4/12	4,9	53	27,000	2400


Motordaten									
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Nenndrehzahl Ex-Schu				
	P ₂	P ₁	I _N	n	FM	ATEX			
		[kW]		[1/min]	_				
T 17-4/8R (Ex)	3,5	4,5	7,9	1410	•	•			
T 17-4/8V (Ex)	2,5	3,5	5,9	1400	•	•			
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•			
T 17-6/8R (Ex)	1,75	2,5	4,45	915	•	•			

Der Wert $P_{1,1}$ entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P_1 bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³.

• = vorhanden, – = nicht vorhanden

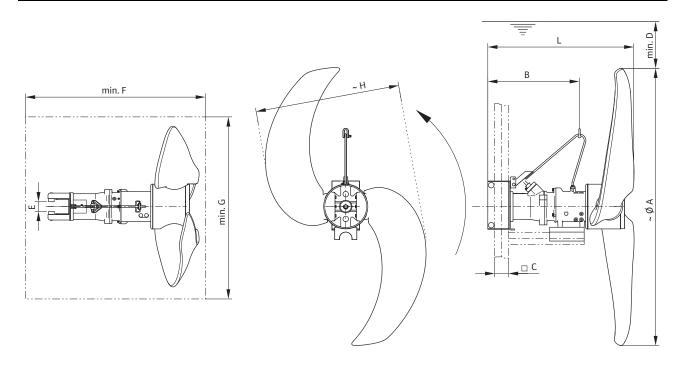
Rührwerke Maxiprop/Megaprop

Maße, Gewichte Wilo-EMU TR 221

Maße, Gewichte										
Wilo-EMU	Abmessungen								Gewicht	
	Α	В	С	D	E	F	G	Н	L	Aggregat
					[mm]					[kg]
TR 221/8	2100	650	100	800	65	1305	1150	950	1155	178
TR 221/12	2100	650	100	800	65	1340	1150	950	1190	188

Technische Daten, Motordaten Wilo-EMU TR 221

Technische Daten				
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft
	max. P _{1.1}	n	-	F
	[kW]	[1/min]	-	[N]
TR 221.25-8/8	0,6	25	29,227	650
TR 221.27-8/8	0,8	27	26,350	800
TR 221.30-8/8	1	30	24,056	950
TR 221.32-8/8	1,1	32	22,320	1100
TR 221.33-6/8	1,2	33	29,227	1200
TR 221.36-6/8	1,4	36	26,350	1400
TR 221.39-6/8	1,7	39	24,056	1700
TR 221.41-4/8V	1,7	41	34,658	1850
TR 221.45-4/8V	2	45	30,380	2150
TR 221.46-4/8	2,5	46	30,380	2200
TR 221.50-4/8	3,1	50	29,227	2600
TR 221.53-4/8	3,7	53	26,350	2900
TR 221.57-4/12	4,2	57	26,350	3400
TR 221.59-4/12	4,9	59	24,056	3650


Motordaten										
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schutz nach					
	P ₂	P ₁	I _N	n	FM	ATEX				
		[kW]		[A] [1/min]		-				
T 17-4/8R (Ex)	3,5	4,5	7,9	1410	•	•				
T 17-4/8V (Ex)	2,5	3,5	5,9	1400	•	•				
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•				
T 17-6/8R (Ex)	1,75	2,5	4,45	915	•	•				
T 17-8/8R (Ex)	1,1	1,67	3,2	700	•	•				

Der Wert P_{1.1} entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P₁ bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³.

• = vorhanden, - = nicht vorhanden

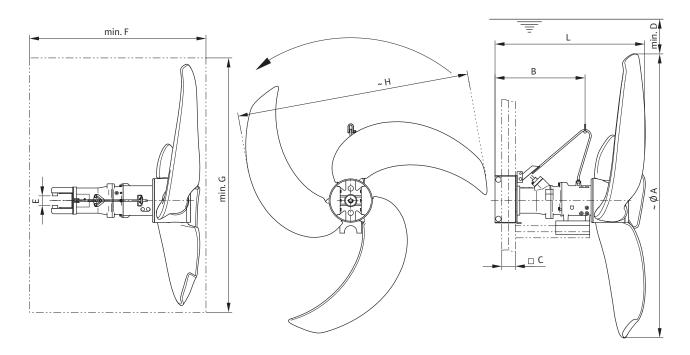
Rührwerke Maxiprop/Megaprop

Maße, Gewichte Wilo-EMU TR 226

Maße, Gewichte										
Wilo-EMU	Abmessungen								Gewicht	
	Α	В	С	D	E	F	G	Н	L	Aggregat
	[mm]								[kg]	
TR 226/8	2600	650	100	800	65	1220	710	510	1070	187

Technische Daten, Motordaten Wilo-EMU TR 226

Technische Daten				
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft
	max. P _{1.1}	n	-	F
	[kW]	[1/min]	-	[N]
TR 226.20-8/8	0,68	20	36,425	800
TR 226.23-8/8	0,92	23	30,380	1140
TR 226.24-8/8	0,98	24	29,227	1220
TR 226.27-8/8	1,19	27	26,350	1430
TR 226.29-6/8	1,36	29	33,046	1670
TR 226.31-6/8	1,66	31	30,380	1970
TR 226.32-6/8	1,82	32	29,227	2110
TR 226.35-4/8V	2,48	35	40,740	2620
TR 226.37-4/8V	2,8	37	38,440	2810
TR 226.39-4/8V	3,13	39	36,425	3060
TR 226.41-4/8	3,55	41	34,658	3400
TR 226.43-4/8	4,01	43	33,046	3670


Motordaten										
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schi	ıtz nach				
	P ₂	P ₁	I _N	n	FM	ATEX				
		[kW]	[A]	[1/min]	_					
T 17-4/8R (Ex)	3,5	4,5	7,9	1410	•	•				
T 17-4/8V (Ex)	2,5	3,5	5,9	1400	•	•				
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•				
T 17-6/8R (Ex)	1,75	2,5	4,45	915	•	•				
T 17-8/8R (Ex)	1,1	1,67	3,2	700	•	•				

Der Wert P_{1.1} entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P₁ bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³. Schub- und Leistungsmessung gemäß ISO 21630.

• = vorhanden, - = nicht vorhanden

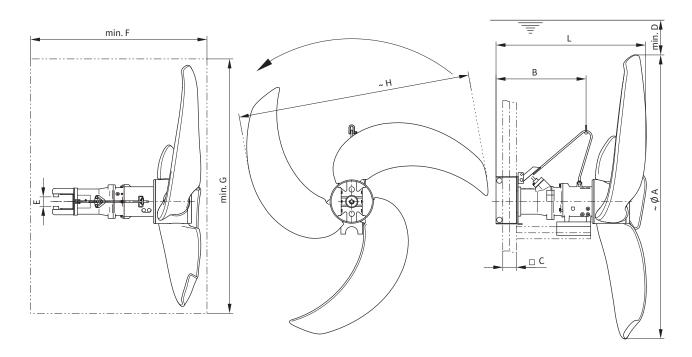
Rührwerke Maxiprop/Megaprop

Maße, Gewichte Wilo-EMU TR 315

Maße, Gewichte										
Wilo-EMU	Abmessungen								Gewicht	
	Α	В	С	D	E	F	G	Н	L	Aggregat
					[mm]					[kg]
TR 315/8	1500	650	100	800	65	1305	1450	1250	1155	190
TR 315/12	1500	650	100	800	65	1340	1450	1250	1190	200

Technische Daten, Motordaten Wilo-EMU TR 315

Technische Daten									
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft					
	max. P _{1.1}	n	-	F					
	[kW]	[1/min]	-	[N]					
TR 315.17-6/8	0,6	17	56,250	450					
TR 315.19-6/8	0,7	19	49,283	500					
TR 315.21-6/8	0,7	21	46,500	580					
TR 315.22-6/8	0,8	22	44,063	650					
TR 315.23-6/8	0,8	23	41,925	700					
TR 315.24-6/8	0,9	24	39,975	750					
TR 315.26-4/8V	1,1	26	56,250	830					
TR 315.29-4/8V	1,4	29	49,283	1000					
TR 315.31-4/8V	1,7	31	46,500	1200					
TR 315.32-4/8V	2	32	44,063	1350					
TR 315.34-4/8V	2,2	34	41,925	1500					
TR 315.36-4/8V	2,7	36	39,975	1650					
TR 315.38-4/8V	3,1	38	36,750	1780					
TR 315.40-4/8	3,4	40	35,355	1920					
TR 315.44-4/12	4,6	44	31,875	2450					


Motordaten										
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Sch	nutz nach				
	P ₂	P ₁	I _N	n	FM	ATEX				
	[kW]		[A]	[1/min]	[1/min] –					
T 17-4/8R (Ex)	3,5	4,5	7,9	1410	•	•				
T 17-4/8V (Ex)	2,5	3,5	5,9	1400	•	•				
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•				
T 17-6/8R (Ex)	1,75	2,5	4,45	915	•	•				

Der Wert $P_{1.1}$ entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P_1 bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³.

• = vorhanden, - = nicht vorhanden

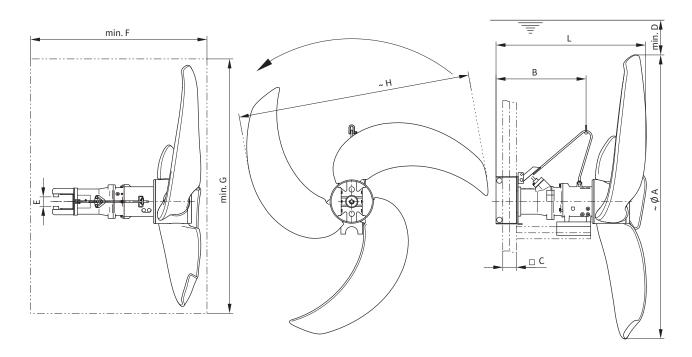
Rührwerke Maxiprop/Megaprop

Maße, Gewichte Wilo-EMU TR 321

Maße, Gewichte										
Wilo-EMU	Abmessungen								Gewicht	
	Α	В	С	D	E	F	G	Н	L	Aggregat
					[mm]					[kg]
TR 321/8	2100	650	100	800	65	1305	2000	1800	1155	199
TR 321/12	2100	650	100	800	65	1340	2000	1800	1190	209

Technische Daten, Motordaten Wilo-EMU TR 321

Technische Daten										
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft						
	max. P _{1.1}	n	-	F						
	[kW]	[1/min]	-	[N]						
TR 321.23-8/8	0,7	23	30,380	750						
TR 321.25-8/8	0,9	25	29,227	900						
TR 321.28-8/8	1,1	28	26,350	1150						
TR 321.31-8/8	1,3	31	22,320	1300						
TR 321.33-6/8	1,5	33	29,227	1450						
TR 321.35-6/8	1,8	35	26,350	1650						
TR 321.36-4/8V	1,8	36	40,740	1800						
TR 321.39-4/8V	2,3	39	36,425	2100						
TR 321.41-4/8	2,5	41	34,658	2250						
TR 321.45-4/8	3,2	45	33,046	2700						
TR 321.49-4/12	4	49	29,227	3250						
TR 321.52-4/12	4,9	52	26,350	3700						


Motordaten										
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schi	ıtz nach				
	P ₂	P ₁	I _N	n	FM	ATEX				
		[kW]	[A]	[1/min]	_					
T 17-4/8R (Ex)	3,5	4,5	7,9	1410	•	•				
T 17-4/8V (Ex)	2,5	3,5	5,9	1400	•	•				
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•				
T 17-6/8R (Ex)	1,75	2,5	4,45	915	•	•				
T 17-8/8R (Ex)	1,1	1,67	3,2	700	•	•				

Der Wert P_{1.1} entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P₁ bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³.

• = vorhanden, - = nicht vorhanden

Rührwerke Maxiprop/Megaprop

Maße, Gewichte Wilo-EMU TR 326

Maße, Gewichte										
Wilo-EMU	Abmessungen								Gewicht	
	Α	В	С	D	E	F	G	Н	L	Aggregat
					[mm]					[kg]
TR 326/8	2600	650	100	800	65	1220	2200	2000	1070	197
TR 326/12	2600	650	100	800	65	1260	2200	2000	1110	207

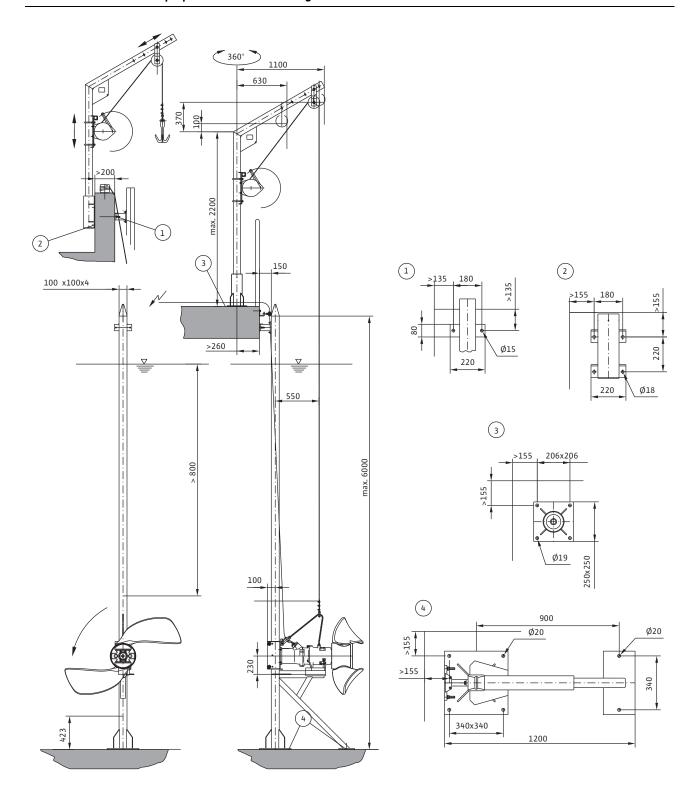
Tauchmotor-Rührwerke

Technische Daten, Motordaten Wilo-EMU TR 326

Technische Daten	Technische Daten											
Wilo-EMU	Leistungsaufnahme	Propellerdrehzahl	Getriebeübersetzung	Schubkraft								
	max. P _{1.1}	n	_	F								
	[kW]	[1/min]	_	[N]								
TR 326.26-6/8	1,74	26	33,046	2040								
TR 326.30-6/8	2,08	30	30,380	2260								
TR 326.31-4/8	2,2	31	46,500	2330								
TR 326.35-4/8	3,08	35	40,740	2990								
TR 326.37-4/8	3,53	37	38,440	3330								
TR 326.39-4/8	3,92	39	36,425	3600								
TR 326.41-4/12	4,42	41	34,658	4030								
TR 326.43-4/12	4,98	43	33,046	4340								

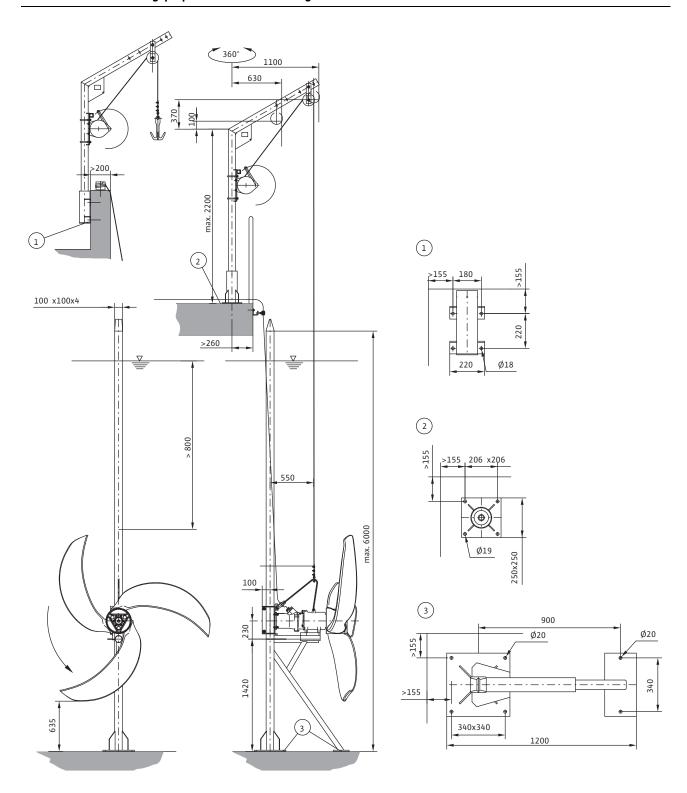
Motordaten							
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schutz nach		
	P ₂	P ₁	I _N	n	FM	ATEX	
		[kW]		[1/min]	_		
T 17-4/8R (Ex)	3,5	4,5	7,9	1410	•	•	
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•	
T 17-4/16R (Ex)	6,5	8,2	13,5	1400	•	•	
T 17-6/8R (Ex)	1,75	2,5	4,45	915	•	•	

Der Wert P_{1.1} entspricht der elektrischen Leistungsaufnahme im Betriebspunkt. P₁ bezieht sich auf die max. elektrische Leistungsaufnahme. Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³. Schub- und Leistungsmessung gemäß ISO 21630.


• = vorhanden, - = nicht vorhanden

Tauchmotor-Rührwerke

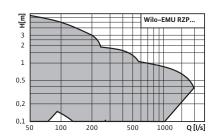
Rührwerke Maxiprop/Megaprop


Einbaubeispiel

Wilo-EMU Rührwerk Maxiprop mit Absenkvorrichtung AVMSH

Einbaubeispiel

Wilo-EMU Rührwerk Megaprop mit Absenkvorrichtung AVMS



Rezirkulationspumpen Rezijet

Baureihenübersicht Wilo-EMU Rezijet

Baureihe: Wilo-EMU Rezijet

>Einsatz

- Förderung von Abwasser über geringe Förderhöhen mit großen Fördermengen
 B. zwischen Ausgleichs-, Nitrifikations- und Denitrifikationsbecken
- Förderung von Brauch-, Roh-, Rein- und Kühlwasser z.B. in Lackieranlagen oder zur Trinkwasseraufbereitung
- Strömungserzeugung in Wasserkanälen,
- z. B. Freizeitparks

76

Rezirkulationspumpen

Rezirkulationspumpen Rezijet

Baureihenübersicht Wilo-EMU Rezijet

Baureihe: Wilo-EMU Rezijet

>	Resor	nderh	iten	/Prodi	uktvortei	le

- vertikale oder Inline-Bauweise
- selbstreinigender Propeller, teilweise mit Helix-Nabe
- Propeller in Stahl- oder PUR-Ausführung
- ATEX- und FM-Ausführung

> Weitere Informationen	Seite
Baureihenbeschreibung	78
• RZP 20	80
• RZP 25-2	84
• RZP 50-3	98
• RZP 60-3	108
• RZP 80-2	116
Einbaubeispiele	124

Rezirkulationspumpen Rezijet

Baureihenbeschreibung Wilo-EMU Rezijet

Bauart

z. B.:

Tauchmotor-Rührwerke mit Strömungsgehäuse, direktgetrieben (RZP 20..., RZP 25-2...) bzw. mit 1-stufigem Planetengetriebe (RZP 50-3..., RZP 60-3..., RZP 80-2...)

Wilo-EMU RZP 50-3.25-4/8 S25

Typenschlüssel

RZP	Rezirkulationspumpe
RZP	Rezirkulationspumpe
50	x 10 = Propeller-Nenndurchmesser in mm
3	Baumuster
25	x 10 = Propellerdrehzahl in 1/min
4	Polzahl
8	x 10 = Statorlänge in mm
S25/K3	S = Schweißpropeller, Angabe der Flügelwinkel in $^{\circ}$ / K = PUR-Propeller, Angabe der Flügelanzahl

Einsatz

- Förderung von Abwasser über geringe Förderhöhen mit großen Fördermengen z.B. zwischen Ausgleichs-, Nitrifikations- und Denitrifikationsbecken
- Förderung von Brauch-, Roh-, Rein- und Kühlwasser z.B. in Lackieranlagen oder zur Trinkwasseraufbereitung
- Strömungserzeugung in Wasserkanälen, z.B. Freizeitparks

Besonderheiten/Produktvorteile

- vertikale oder Inline-Bauweise
- selbstreinigender Propeller, teilweise mit Helix-Nabe
- Propeller in Stahl- oder PUR-Ausführung
- ATEX- und FM-Ausführung

Technische Daten

- Netzanschluss: 3~400 V, 50 Hz
- Betriebsart eingetaucht: S1
- Schutzart: IP 68
- max. Mediumstemperatur: 40 °C
- Aggregate direktgetrieben oder mit 1-stufigem Planetengetriebe
- Gleitringdichtung mit SiC/SiC-Paarung
- dauergeschmierte Wälzlager
- max. Tauchtiefe: 12,5 m

Ausstattung/Funktion

- stationäre Montage direkt am Strömungsrohr
- flexible Montage über Absenkvorichtung
- vertikale oder Inline-Montage möglich

Werkstoffe

- Gehäuseteile: EN-GJL-250
- Propeller: PUR, Stahl 1.0037 oder Edelstahl 1.4571
- Propellernabe: Stahl 1.0037 oder Edelstahl 1.4571
- Schraubverbindungen: Edelstahl 1.4301 bzw. 1.4571
- Getriebewelle: Edelstahl 1.4462 (RZP 50-3, RZP 60-3, RZP 80-2)
- Strömungsgehäuse: Edelstahl 1.4571

Beschreibung/Konstruktion Propeller

2-, 3- oder 4-flügliger Propeller mit einem Propeller-Nenndurchmesser von 200 mm bis 800 mm. Verzopfungsfreie Konstruktion durch rückwärtsgekrümmte Anströmkante. Propeller bis zu einem Durchmesser von 250 mm sind mit patentierter Helix-Nabe.

Motor

Wilo-Tauchmotor der T-Baureihe mit standardisiertem Anschluss zur einfachen und effizienten Anpassung der Motorleistung. Die Motorwärme wird über das Gehäuse direkt an das Medium abgegeben. Die Wicklung ist mit einer Temperaturüberwachung ausgestattet. Eine hohe Lebensdauer der Motorlagerung wird durch groß dimensionierte Schräg- (nicht bei RZP 80-2) und Rillenkugellager gewährleistet.

Abdichtung

RZP 20 ... 25-2

Doppelte Wellenabdichtung mit großvolumiger Dichtungskammer zur Aufnahme der Leckage der Gleitringdichtung. Auf Wunsch kann die Dichtungskammer mit einer internen oder externen Dichtraume-lektrode ausgestattet werden. Mediumseitig erfolgt die Abdichtung mit einer korrosionsbeständigen und verschleißfesten Gleitringdichtung aus Vollmaterial Sillizium-Karbid, motorseitig durch einen Radialwellendichtring. Eine Dichtbuchse gewährleistet einen dauerhaft korrosionsgeschützten Sitz der Gleitringdichtung.

RZP 50-3 ... 80-2

Doppelte Wellenabdichtung mit großvolumiger Vor- und Dichtungskammer zur Aufnahme der Leckage der Gleitringdichtung. Auf Wunsch kann die Vorkammer mit einer externen Dichtraumelektrode ausgestattet werden. Motor- und mediumseitig erfolgt die Abdichtung mit einer korrosionsbeständigen und verschleißfesten Gleitringdichtung aus Vollmaterial Sillizium-Karbid. Die Abdichtung zwischen den einzelnen Kammern erfolgt durch Radialwellendichtringe. Eine Dichtbuchse gewährleistet einen dauerhaft korrosionsgeschützten Sitz der Gleitringdichtung.

Getriebe RZP 50-3...80-2

1-stufiges Planetengetriebe mit austauschbaren Übersetzungen. Die Getriebelager sind so dimensioniert, dass die resultierenden Rührkräfte absorbiert und nicht an die Motorlagerung weitergegeben werden.

Rezirkulationspumpen Rezijet

Baureihenbeschreibung Wilo-EMU Rezijet

Kabel

Bei der Stromzuführungsleitung handelt es sich um den Typ H07 (mit T 12-Motor) bzw. NSSHÖU (mit T 17- und T 20-Motor) für schwere mechanische Beanspruchungen. Die Stromzuführungsleitung ist über eine druckwasserdichte Kabeleinführung mit Zugentlastung und Knickschutz in das Motorgehäuse eingeführt. Die einzelnen Adern sowie der Kabelmantel sind zusätzlich als Flüssigkeitssperre vergossen

Optionen

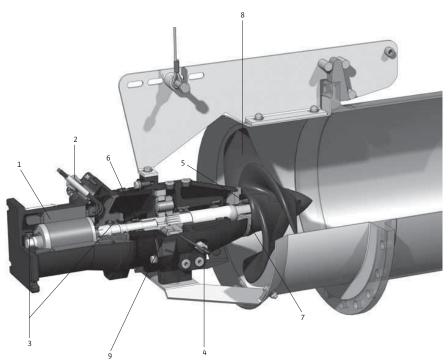
- Sonderspannungen
- Kaltleitertemperaturfühler
- externe Dichtraumkontrolle
- Flüssigkeramikbeschichtung Ceram C0
- Ex-Zulassung nach ATEX oder FM

Lieferumfang

- Rezirkulationspumpe mit montiertem Propeller, Strömungsgehäuse und Kabel
- Kabellänge nach Kundenwunsch
- Zubehör nach Kundenwunsch
- Betriebs- und Wartungshandbuch

Auslegung

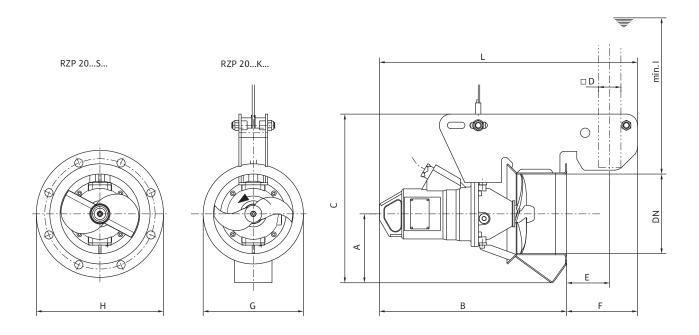
Um ein optimales Förderergebnis zu gewährleisten, muss für jeden Anwendungsfall eine separate Auslegung erfolgen. Installieren Sie die Aggregate genau nach den Vorgaben der gelieferten Auslegung.


Inbetriebnahme

Betriebsart S1 - Dauerbetrieb:

Das Tauchmotor-Rührwerk muss eingetaucht betrieben werden. Ein Austauchen des Propellers ist untersagt. Bei schwankenden Pegelständen muss eine automatische Abschaltung erfolgen, sobald die Mindestwasserüberdeckung unterschritten wird. Die Stromzuführungsleitung ist so zu installieren, dass diese nicht in den Propeller gezogen werden kann!

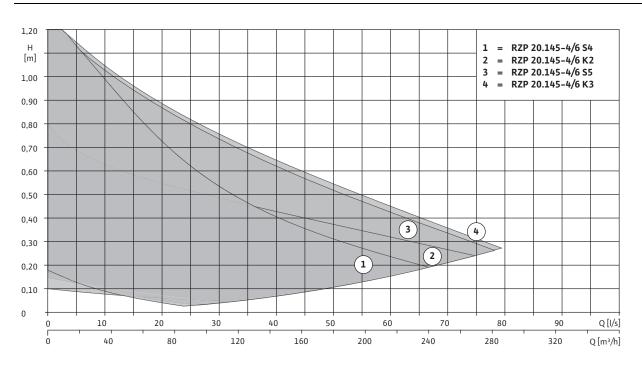
Zubehör


- Absenkvorrichtung
- Hilfshebevorrichtung
- Spezialbefestigungsteile zur Verwendung einer Hilfshebevorrichtung für mehrere Aggregate
- zusätzliche Seilabspannung
- Befestigungssätze mit Verbundanker
- Inline-Ausführung

1 = Motor; 2 = Kabeleinführung; 3 = Motorlager; 4 = externe Elektrode zur Überwachung der Dichtungskammer; 5 = mediumseitige Gleitringdichtung; 6 = motorseitige Gleitringdichtung; 7 = Dichtbuchse; 8 = Strömungsgehäuse; 9 = 1-stufiges Planetengetriebe

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 20...4/6

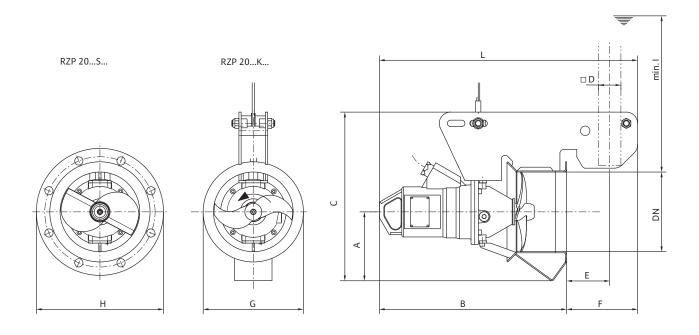

Maße, Gewichte												
Wilo-EMU		Abmessungen									Nennweite Flansch	Gewicht
	Α	В	С	D	E	F	G	Н	I	L	DN	Aggregat
					[m	m]					-	[kg]
RZP 20/6 K	185	500	450	60	115	190	270	340	600	690	200	35
RZP 20/6 S	185	500	450	60	115	190	270	340	600	690	200	37

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 20...4/6

Kennlinien

Technische Daten		
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung
	n	-
	[1/min]	-
RZP 20.145-4/6 K2	1336	1,000
RZP 20.145-4/6 K3	1336	1,000
RZP 20.145-4/6 S4	1336	1,000
RZP 20.145-4/6 S5	1336	1,000

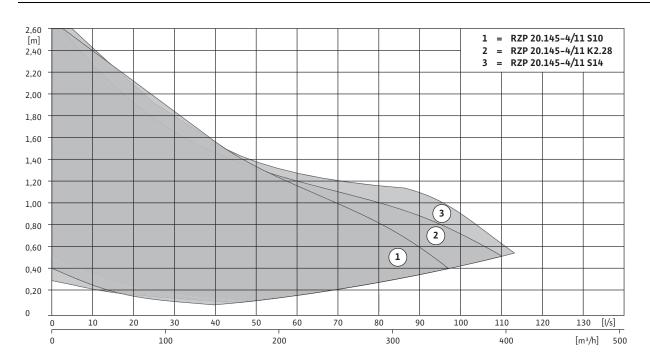

Motordaten							
Wilo-EMU	Motornenn- leistung	Laictingcautnahma Nonne		Nenndrehzahl	Ex-Schutz nach		
	P ₂			n	FM	ATEX	
		[kW]	[A]	[1/min]		_	
T 12-4/6 (Ex)	0,5	0,73	1,42	1336	•	•	

Alle Daten sind gültig für $3\sim400$ V, 50 Hz und eine Dichte von 1 kg/dm 3 .

^{• =} vorhanden, - = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 20...4/11

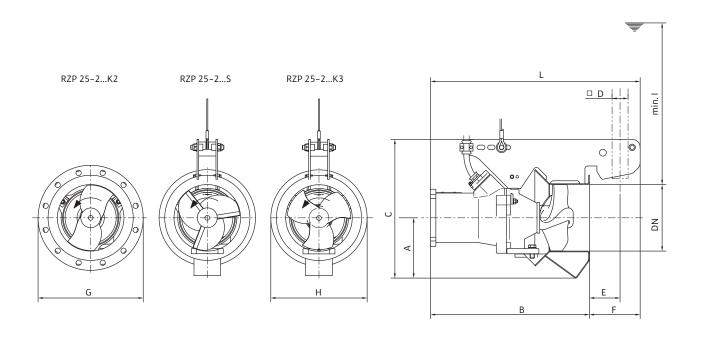

Maße, Gewichte												
Wilo-EMU		Abmessungen										Gewicht
	Α	В	С	D	E	F	G	Н	I	L	DN	Aggregat
					[m	m]					-	[kg]
RZP 20/11 K	185	596	450	60	115	190	270	340	600	786	200	41
RZP 20/11 S	185	596	450	60	115	190	270	340	600	786	200	43

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 20...4/11

Kennlinien

Technische Daten		
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung
	n	-
	[1/min]	-
RZP 20.145-4/11 K2.28	1392	1,000
RZP 20.145-4/11 S10	1392	1,000
RZP 20.145-4/11 S14	1392	1,000

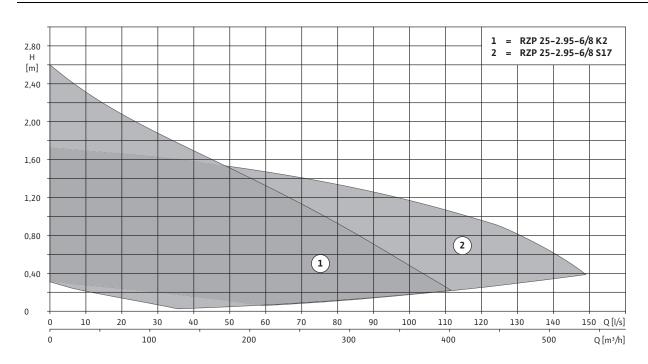

Motordaten							
Wilo-EMU	Motornenn- leistung Leistungsaufnahn		Nennstrom	Nenndrehzahl	Ex-Schutz nach		
	P ₂	P ₁	I _N	n	FM	ATEX	
		[kW]	[A]	[1/min]	_		
T 12-4/11 (Ex)	1,3	1,74	3,3	1392	•	•	

Alle Daten sind gültig für $3\sim400~V$, 50~Hz und eine Dichte von $1~kg/dm^3$.

^{• =} vorhanden, - = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 25-2...6/8

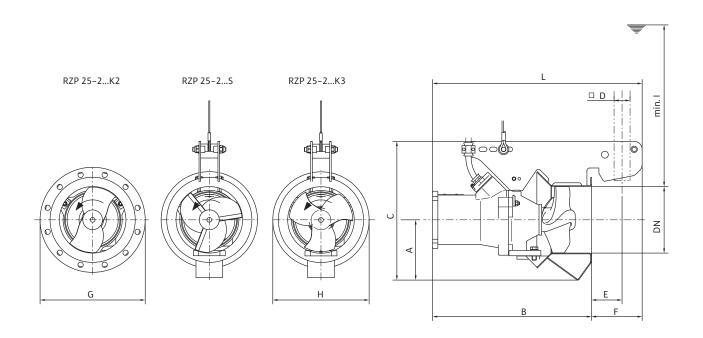

Maße, Gewichte												
Wilo-EMU		Abmessungen										Gewicht
	Α	В	С	D	E	F	G	Н	I	L	DN	Aggregat
					[m	m]					-	[kg]
RZP 25-2/8 K	227	562	522	60	115	190	395	362	900	752	250	65
RZP 25-2/8 S	227	562	522	60	115	190	395	362	900	752	250	69

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 25-2...6/8

Kennlinien

Technische Daten		
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung
	n	-
	[1/min]	-
RZP 25-2.95-6/8 K2	915	1,000
RZP 25-2.95-6/8 S17	915	1,000

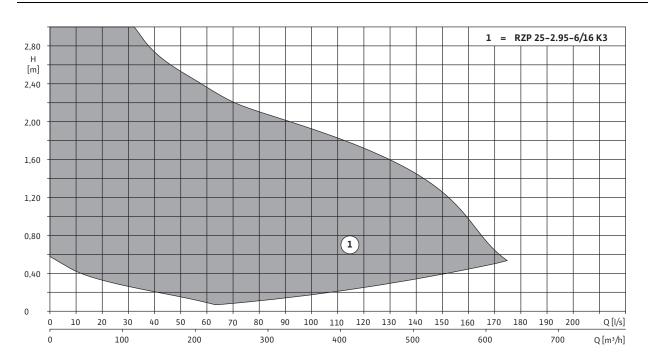

Motordaten							
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schutz nach		
	P ₂	P ₁	I _N	n	FM	ATEX	
	[kW]		[A]	[1/min]		_	
T 17-6/8R (Ex)	1,75	2,5	4,45	915	•	•	

Alle Daten sind gültig für $3\sim400$ V, 50 Hz und eine Dichte von 1 kg/dm 3 .

^{• =} vorhanden, – = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 25-2...6/16

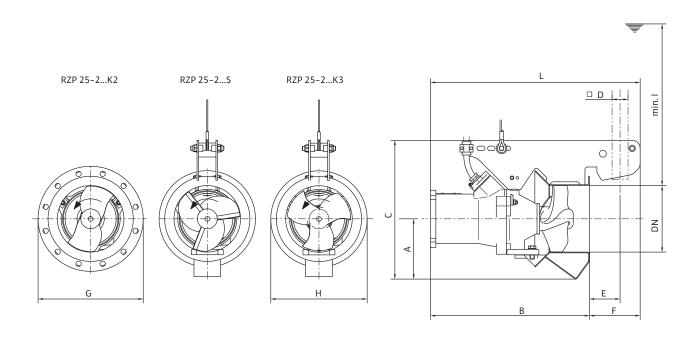

Maße, Gewichte												
Wilo-EMU		Abmessungen										Gewicht
	Α	В	С	D	E	F	G	Н	I	L	DN	Aggregat
	[mm]											[kg]
RZP 25-2/16 K	227	635	522	60	115	190	395	362	900	825	250	85

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 25-2...6/16

Kennlinien

Technische Daten		
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung
	n	-
	[1/min]	-
RZP 25-2.95-6/16 K3	931	1,000

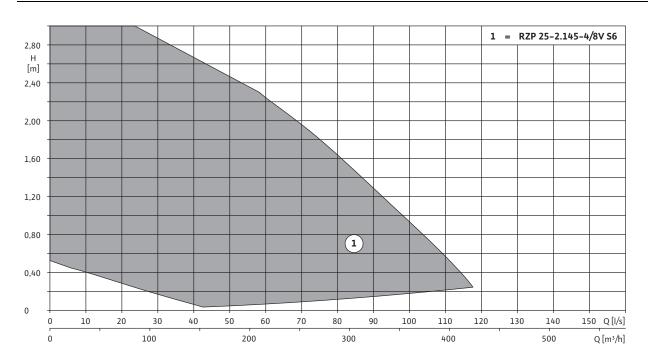

Motordaten								
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schutz nach			
	P ₂	P ₁	I _N	n	FM	ATEX		
	[kW]		[A]	[1/min]	_			
T 17-6/16R (Ex)	3,7	5,2	9,1	931	•	•		

Alle Daten sind gültig für $3\sim400$ V, 50 Hz und eine Dichte von 1 kg/dm 3 .

• = vorhanden, – = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 25-2...4/8V

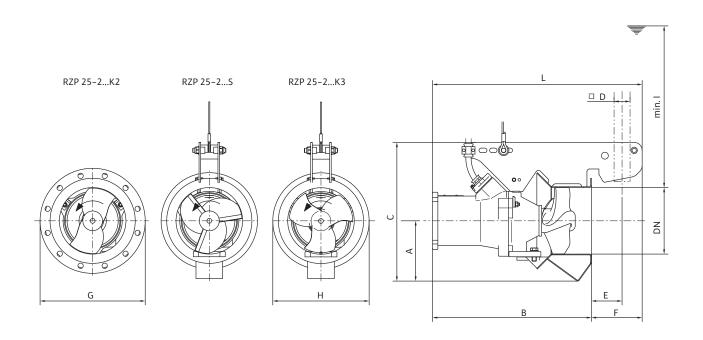

Maße, Gewichte												
Wilo-EMU		Abmessungen										Gewicht
	Α	В	С	D	E	F	G	Н	I	L	DN	Aggregat
	[mm]											[kg]
RZP 25-2/8 S	227	562	522	60	115	190	395	362	900	752	250	71

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 25-2...4/8V

Kennlinien

Technische Daten		
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung
	n	-
	[1/min]	-
RZP 25-2.145-4/8V S6	1400	1,000

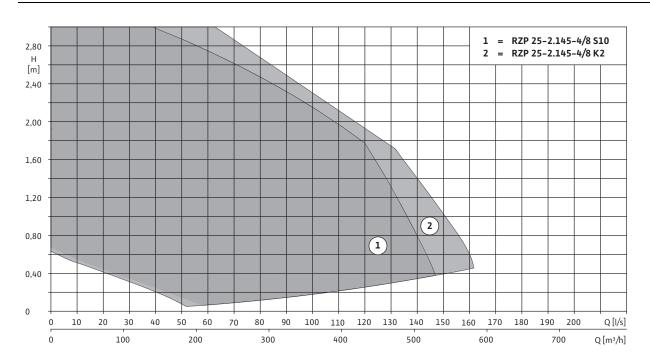

Motordaten								
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schutz nach			
	P ₂	P ₁	I _N	n	FM	ATEX		
		[kW]		[1/min]	_			
T 17-4/8V (Ex)	2,5	3,5	5,9	1400	•	•		

Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm 3 .

^{• =} vorhanden, – = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 25-2...4/8

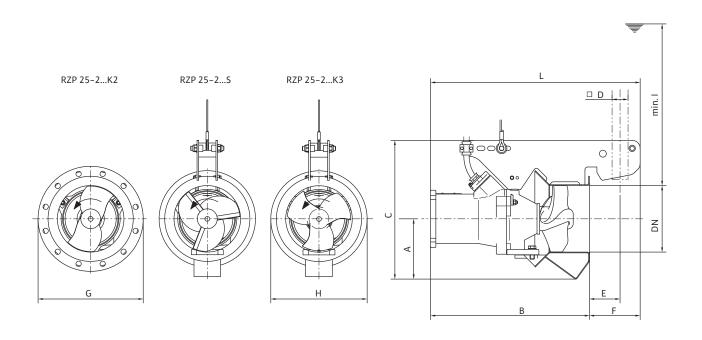

Maße, Gewichte												
Wilo-EMU			Nennweite Flansch	Gewicht								
	Α	В	С	D	E	F	G	Н	I	L	DN	Aggregat
					[m	m]					-	[kg]
RZP 25-2/8 K	227	562	522	60	115	190	395	362	900	752	250	67
RZP 25-2/8 S	227	562	522	60	115	190	395	362	900	752	250	71

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 25-2...4/8

Kennlinien

Technische Daten											
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung									
	n	-									
	[1/min]	-									
RZP 25-2.145-4/8 K2	1410	1,000									
RZP 25-2.145-4/8 S10	1410	1,000									

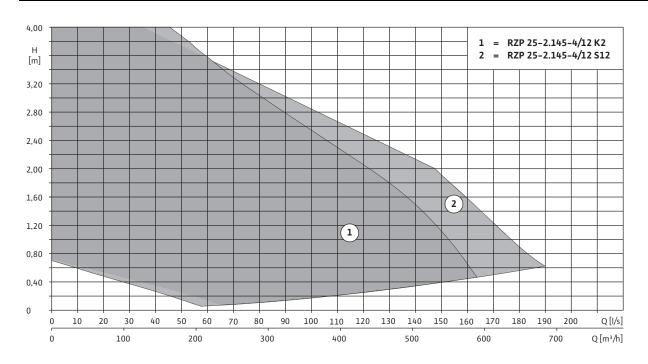

Motordaten							
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schutz nach		
	P ₂	P ₁	I _N	n	FM	ATEX	
	[kW]		[A]	[1/min]		_	
T 17-4/8R (Ex)	3,5	4,5	7,9	1410	•	•	

Alle Daten sind gültig für $3\sim400~\text{V}$, 50~Hz und eine Dichte von $1~\text{kg/dm}^3$.

^{• =} vorhanden, - = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 25-2...4/12

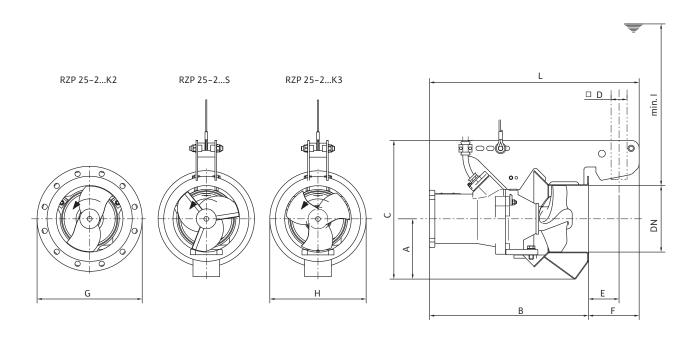

Maße, Gewichte												
Wilo-EMU			Nennweite Flansch	Gewicht								
	Α	В	С	D	E	F	G	Н	I	L	DN	Aggregat
					[m	m]					-	[kg]
RZP 25-2/12 K	227	597	522	60	115	190	395	362	900	787	250	73
RZP 25-2/12 S	227	597	522	60	115	190	395	362	900	787	250	77

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 25-2...4/12

Kennlinien

Technische Daten											
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung									
	n	-									
	[1/min]	-									
RZP 25-2.145-4/12 K2	1405	1,000									
RZP 25-2.145-4/12 S12	1405	1,000									

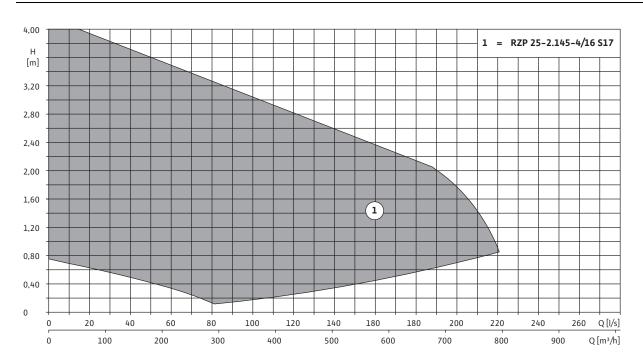

Motordaten							
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schutz nach		
	P ₂	P ₁	I _N	n	FM	ATEX	
		[kW]		[1/min]	-		
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•	

Alle Daten sind gültig für $3\sim400~\text{V}$, 50~Hz und eine Dichte von $1~\text{kg/dm}^3$.

^{• =} vorhanden, – = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 25-2...4/16

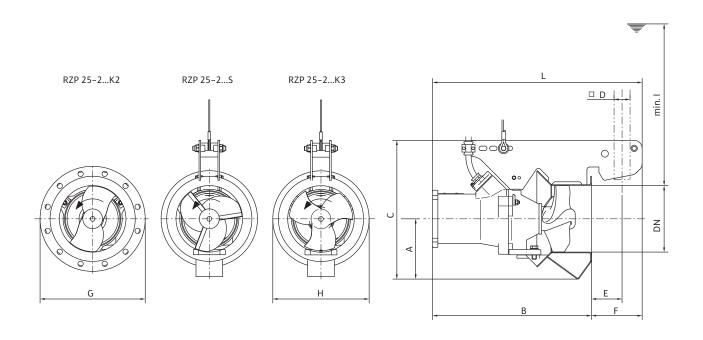

Maße, Gewichte												
Wilo-EMU		Abmessungen										Gewicht
	Α	В	С	D	E	F	G	Н	I	L	DN	Aggregat
	[mm]										_	[kg]
RZP 25-2/16 S	227	635	522	60	115	190	395	362	900	825	250	89

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 25-2...4/16

Kennlinien

Technische Daten		
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung
	n	-
	[1/min]	-
RZP 25-2.145-4/16 S17	1400	1,000

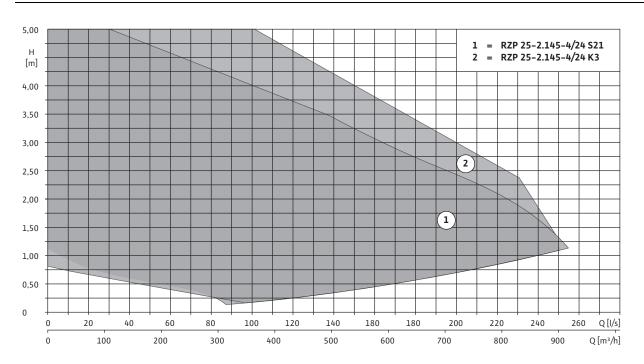

Motordaten							
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schutz nach		
	P ₂		I _N	n	FM	ATEX	
	[kW]		[A]	[1/min]	_		
T 17-4/16R (Ex)	6,5	8,2	13,5	1400	•	•	

Alle Daten sind gültig für $3\sim400~V$, 50~Hz und eine Dichte von $1~kg/dm^3$.

• = vorhanden, – = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 25-2...4/24

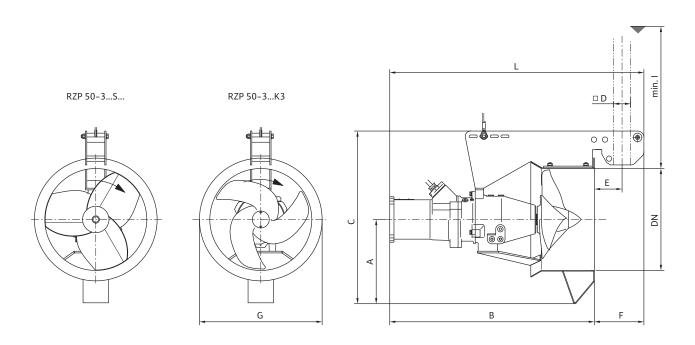

Maße, Gewichte												
Wilo-EMU		Abmessungen										Gewicht
	Α	В	С	D	E	F	G	Н	I	L	DN	Aggregat
					[m	m]					-	[kg]
RZP 25-2/24 K	227	715	522	60	115	190	395	362	900	905	250	101
RZP 25-2/24 S	227	715	522	60	115	190	395	362	900	905	250	104

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 25-2...4/24

Kennlinien

Technische Daten										
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung								
	n	-								
	[1/min]	-								
RZP 25-2.145-4/24 K3	1417	1,000								
RZP 25-2.145-4/24 S21	1417	1,000								

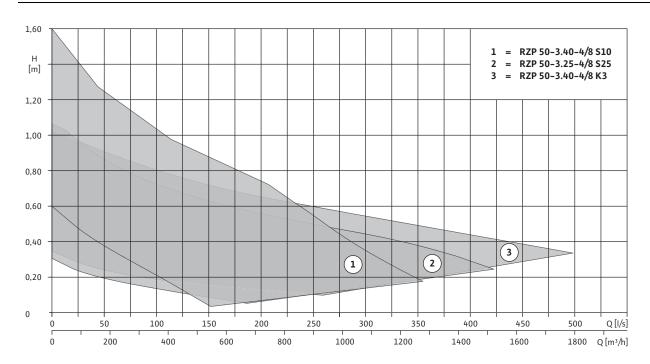

Motordaten							
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schutz nach		
	P ₂	P ₁	l _N n		FM	ATEX	
		[kW]		[1/min]	-		
T 17-4/24R (Ex)	10	12,2	21	1417	•	•	

Alle Daten sind gültig für $3\sim400$ V, 50 Hz und eine Dichte von 1 kg/dm 3 .

^{• =} vorhanden, - = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 50-3...4/8

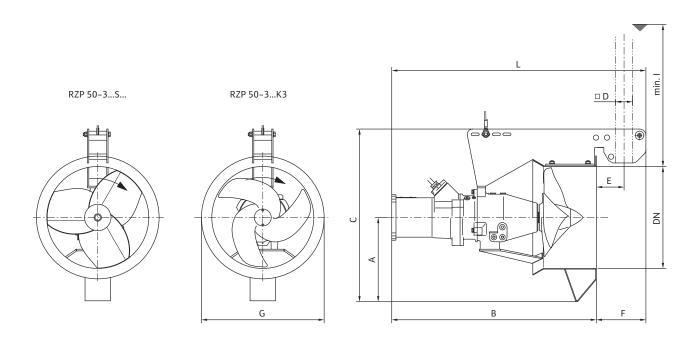

Maße, Gewichte											
Wilo-EMU				Nennweite Flansch	Gewicht						
	Α	В	С	D	E	F	G	I	L	DN	Aggregat
					[mm]					-	[kg]
RZP 50-3/8 K	398	897	816	80	130	234	580	900	1129	500	129
RZP 50-3/8 S	398	897	816	80	130	234	580	900	1129	500	140

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 50-3...4/8

Kennlinien

Technische Daten		
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung
	n	-
	[1/min]	-
RZP 50-3.25-4/8 S25	250	5,590
RZP 50-3.40-4/8 K3	400	3,600
RZP 50-3.40-4/8 S10	400	3,600

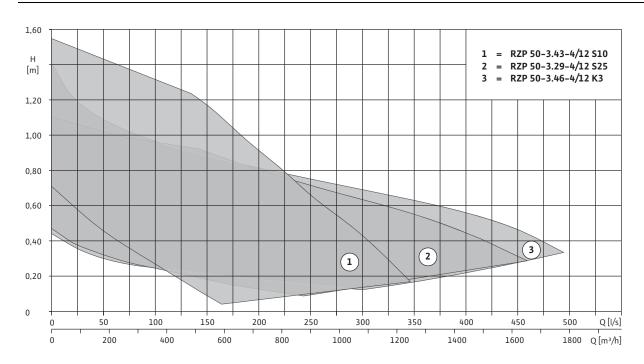

Motordaten							
Wilo-EMU	Motornenn- leistung Leistungsaufnahn		Nennstrom	Nenndrehzahl	Ex-Schutz nach		
	P ₂	P ₁	I _N	n	FM	ATEX	
		[kW]	[A]	[1/min]	_		
T 17-4/8R (Ex)	3,5	4,5	7,9	1410	•	•	

Alle Daten sind gültig für $3\sim400~V$, 50~Hz und eine Dichte von $1~kg/dm^3$.

^{• =} vorhanden, - = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 50-3...4/12

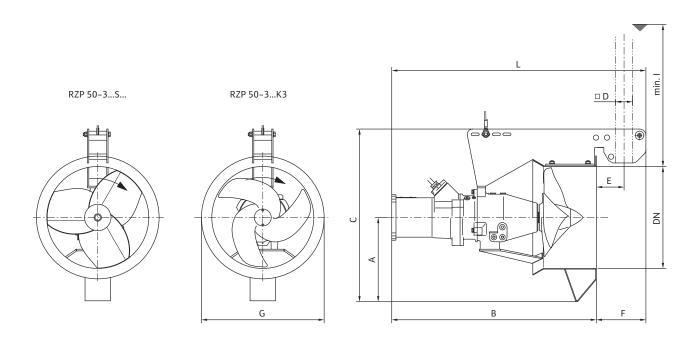

Maße, Gewichte											
Wilo-EMU			Nennweite Flansch	Gewicht							
	Α	В	С	D	E	F	G	I	L	DN	Aggregat
					[mm]					-	[kg]
RZP 50-3/12 K	398	932	816	80	130	234	580	900	1164	500	137
RZP 50-3/12 S	398	932	816	80	130	234	580	900	1164	500	148

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 50-3...4/12

Kennlinien

Technische Daten		
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung
	n	-
	[1/min]	-
RZP 50-3.29-4/12 S25	290	4,900
RZP 50-3.43-4/12 S10	430	3,364
RZP 50-3.46-4/12 K3	460	3,167

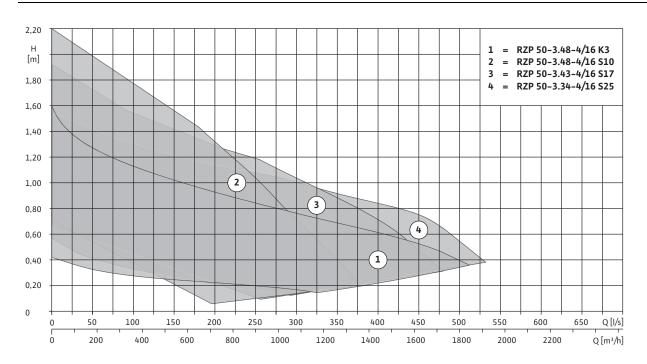

Motordaten							
Wilo-EMU	Motornenn- leistung Leistungsaufnahme		Nennstrom Nenndrehzahl		Ex-Schutz nach		
	P ₂	P ₁	I _N	n	FM	ATEX	
		[kW]	[A]	[1/min]		-	
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•	

Alle Daten sind gültig für $3\sim400~V$, 50~Hz und eine Dichte von $1~kg/dm^3$.

^{• =} vorhanden, - = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 50-3...4/16

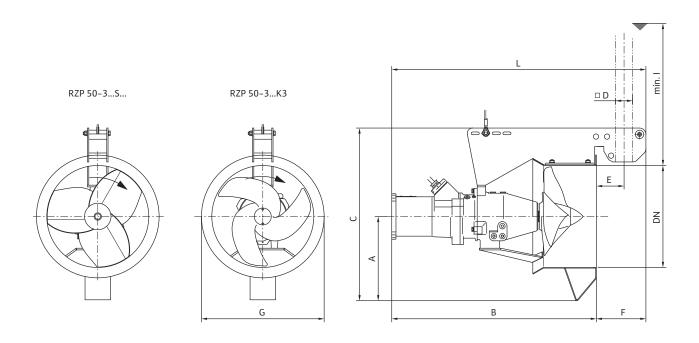

Maße, Gewichte											
Wilo-EMU		Abmessungen Nenny Flan									
	Α	В	С	D	E	F	G	I	L	DN	Aggregat
					[mm]					-	[kg]
RZP 50-3/16 K	398	970	816	80	130	234	580	900	1202	500	147
RZP 50-3/16 S	398	970	816	80	130	234	580	900	1202	500	158

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 50-3...4/16

Kennlinien

Technische Daten		
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung
	n	-
	[1/min]	-
RZP 50-3.34-4/16 S25	340	4,250
RZP 50-3.43-4/16 S17	430	3,364
RZP 50-3.48-4/16 K3	480	3,000
RZP 50-3.48-4/16 S10	480	3,000

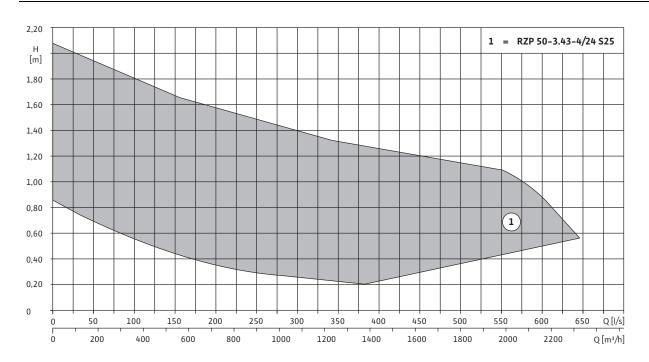

Motordaten							
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schutz nach		
	P ₂	P ₁	I _N	n	FM	ATEX	
		[kW]	[A]	[1/min]	_		
T 17-4/16R (Ex)	6,5	8,2	13,5	1400	•	•	

Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³.

^{• =} vorhanden, - = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 50-3...4/24

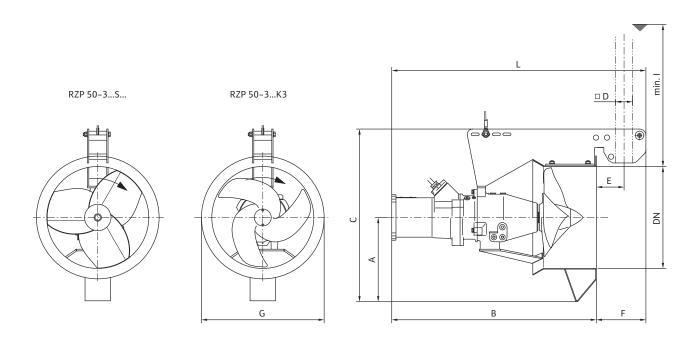

Maße, Gewichte											
Wilo-EMU				Nennweite Flansch	Gewicht						
	Α	В	С	D	E	F	G	I	L	DN	Aggregat
	[mm]										[kg]
RZP 50-3/24 S	398	1050	816	80	130	234	580	900	1282	500	170

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 50-3...4/24

Kennlinien

Technische Daten		
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung
	n	-
	[1/min]	-
RZP 50-3.43-4/24 S25	430	3,364

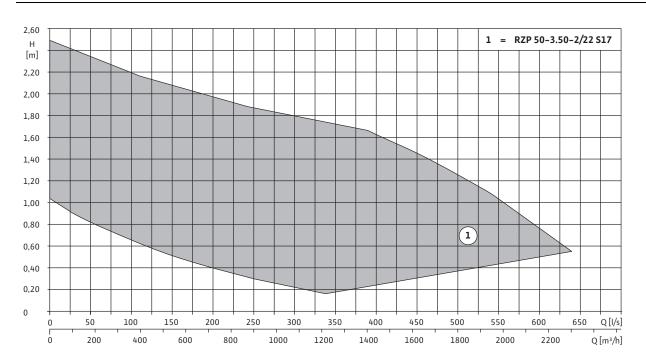

Motordaten						
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Sch	utz nach
	P ₂ P ₁		I _N	n	FM	ATEX
		[kW]	[A]	[1/min]		_
T 17-4/24R (Ex)	10	12,2	21	1417	•	•

Alle Daten sind gültig für $3\sim400$ V, 50 Hz und eine Dichte von 1 kg/dm 3 .

• = vorhanden, – = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 50-3...2/22

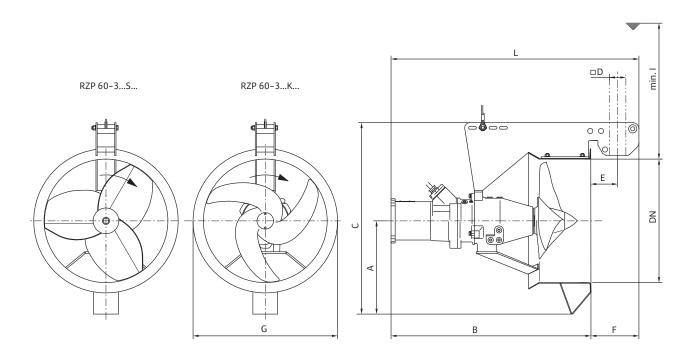

Maße, Gewichte											
Wilo-EMU				Nennweite Flansch	Gewicht						
	Α	В	С	D	E	F	G	I	L	DN	Aggregat
	[mm]										[kg]
RZP 50-3/22 S	398	1050	816	80	130	234	580	900	1282	500	170

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 50-3...2/22

Kennlinien

Technische Daten		
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung
	n	-
	[1/min]	-
RZP 50-3.50-2/22 S17	500	5,875

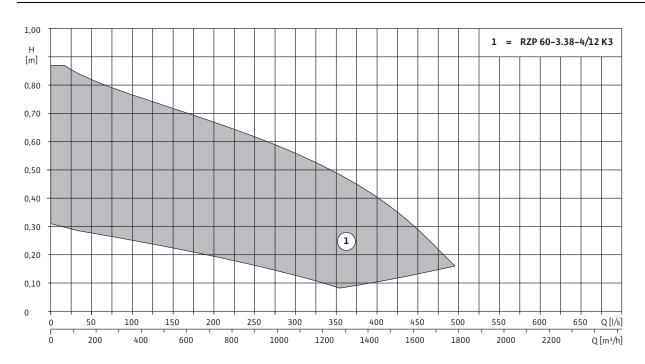

Motordaten									
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	e Nennstrom Nenndrehzah		lrehzahl Ex-Schutz nach				
	P ₂	P ₁	I _N	n	FM	ATEX			
		[kW]	[A]	[1/min]	_				
T 17-2/22R (Ex)	10,5	12,3	20,5	2914	•	•			

Alle Daten sind gültig für $3\sim400$ V, 50 Hz und eine Dichte von 1 kg/dm 3 .

• = vorhanden, – = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 60-3...4/12

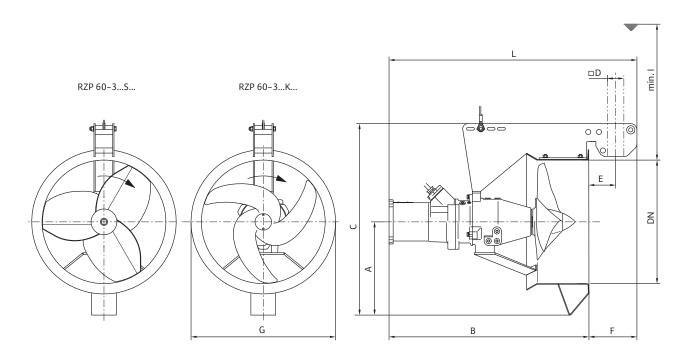

Maße, Gewichte											
Wilo-EMU				Nennweite Flansch	Gewicht						
	Α	В	С	D	E	F	G	I	L	DN	Aggregat
	[mm]										[kg]
RZP 60-3/12 K	453	920	930	80	130	232	695	900	1152	600	143

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 60-3...4/12

Kennlinien

Technische Daten										
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung								
	n	-								
	[1/min]	-								
RZP 60-3.38-4/12 K3	380	3,880								

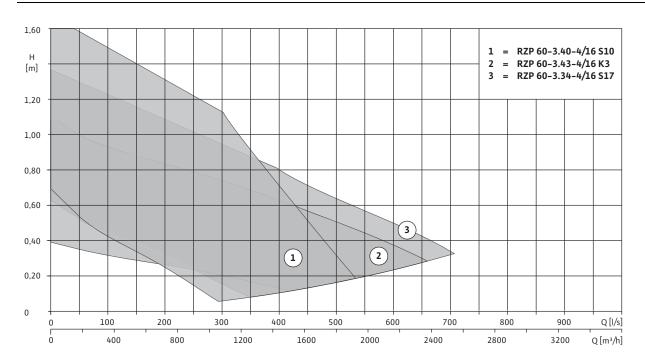

Motordaten								
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme Nennstrom Nenndrehzahl		Ex-Sch	Ex-Schutz nach			
	P ₂	P ₁	I _N	n	FM	ATEX		
		[kW]	[A]	[1/min]		_		
T 17-4/12R (Ex)	4,5	5,8	9,4	1405	•	•		

Alle Daten sind gültig für $3\sim400$ V, 50 Hz und eine Dichte von 1 kg/dm 3 .

• = vorhanden, – = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 60-3...4/16

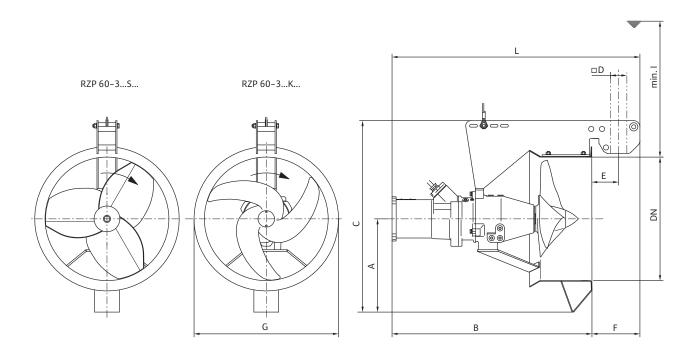

Maße, Gewichte											
Wilo-EMU				Al	omessung	en				Nennweite Flansch	Gewicht
	Α	В	С	D	E	F	G	I	L	DN	Aggregat
				-	[kg]						
RZP 60-3/16 K	453	958	930	80	130	232	695	900	1190	600	153
RZP 60-3/16 S	453	958	930	80	130	232	695	900	1190	600	164

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 60-3...4/16

Kennlinien

Technische Daten		
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung
	n	-
	[1/min]	-
RZP 60-3.34-4/16 S17	340	4,250
RZP 60-3.40-4/16 S10	400	3,600
RZP 60-3.43-4/16 K3	430	3,364

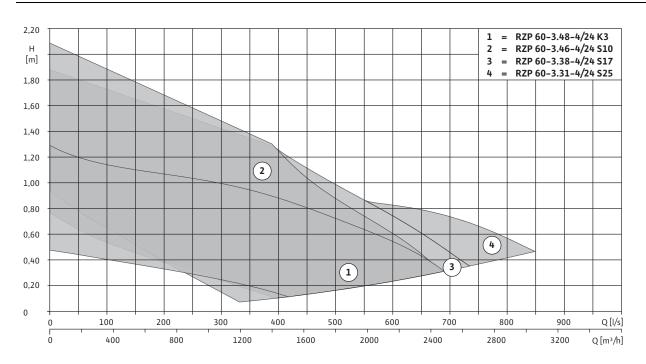

Motordaten								
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schutz nach			
	P ₂	P ₁	I _N	n	FM	ATEX		
		[kW]	[A]	[1/min]		_		
T 17-4/16R (Ex)	6,5	8,2	13,5	1400	•	•		

Alle Daten sind gültig für $3\sim400~V$, 50~Hz und eine Dichte von $1~kg/dm^3$.

^{• =} vorhanden, - = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 60-3...4/24

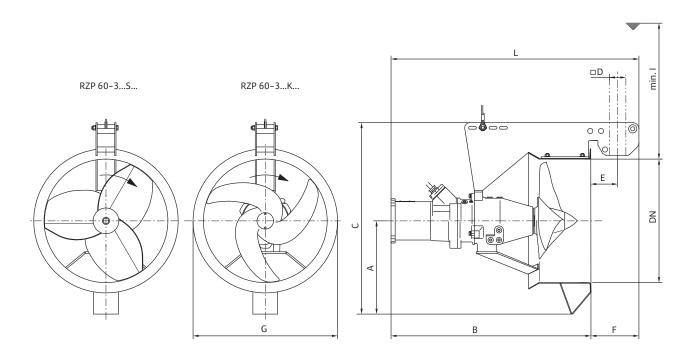

Maße, Gewichte											
Wilo-EMU				Al	omessung	en				Nennweite Flansch	Gewicht
	Α	В	С	D	E	F	G	I	L	DN	Aggregat
				-	[kg]						
RZP 60-3/24 K	453	1038	930	80	130	232	695	900	1270	600	165
RZP 60-3/24 S	453	1038	930	80	130	232	695	900	1270	600	176

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 60-3...4/24

Kennlinien

Technische Daten		
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung
	n	-
	[1/min]	-
RZP 60-3.31-4/24 S25	310	4,714
RZP 60-3.38-4/24 S17	380	3,880
RZP 60-3.46-4/24 S10	460	3,167
RZP 60-3.48-4/24 K3	480	3.000

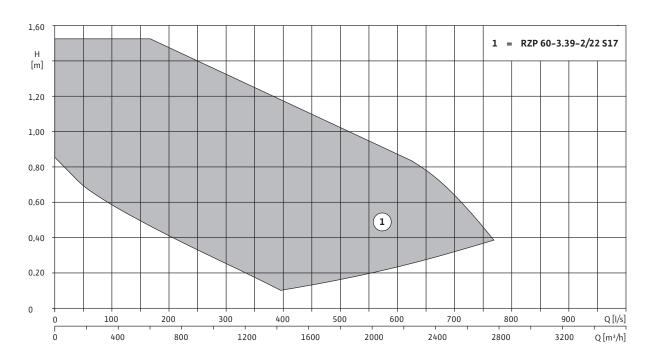

Motordaten						
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Sch	utz nach
	P ₂	P ₂ P ₁		n	FM	ATEX
		[kW]	[A]	[1/min]		_
T 17-4/24R (Ex)	10	12,2	21	1417	•	•

Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm³.

^{• =} vorhanden, - = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 60-3...2/22

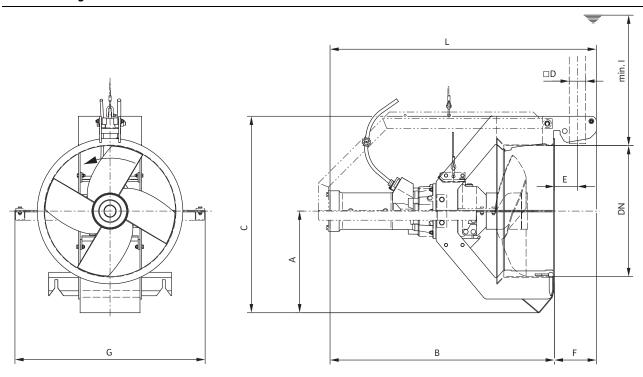

Maße, Gewichte											
Wilo-EMU				Nennweite Flansch	Gewicht						
	Α	В	С	D	E	F	G	I	L	DN	Aggregat
	[mm]										[kg]
RZP 60-3/22 S	453	1038	930	80	130	232	695	900	1270	600	174

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 60-3...2/22

Kennlinien

Technische Daten		
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung
	n	-
	[1/min]	-
RZP 60-3.39-2/22 S17	390	7,500

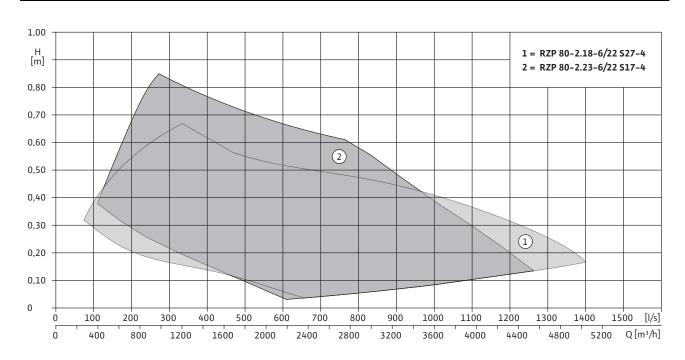

Motordaten						
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schi	utz nach
	P ₂	P ₁	I _N	n	FM	ATEX
		[kW]	[A]	[1/min]		_
T 17-2/22R (Ex)	10,5	12,3	20,5	2914	•	•

Alle Daten sind gültig für 3~400 V, 50 Hz und eine Dichte von 1 kg/dm 3 .

• = vorhanden, – = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 80-2...6/22

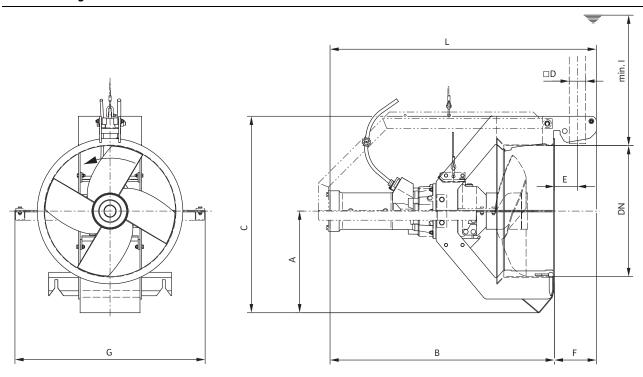

Maße, Gewichte											
Wilo-EMU			Nennweite Flansch	Gewicht							
	Α	В	С	D	E	F	G	I	L	DN	Aggregat
	[mm]										[kg]
RZP 80-2/22 S	615	1307	1188	100	140	254	1150	1400	1560	800	415

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 80-2...6/22

Kennlinien

Technische Daten										
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung								
	n	-								
	[1/min]	-								
RZP 80-2.18-6/22 S27-4	180	5,286								
RZP 80-2.23-6/22 S17-4	230	4,000								

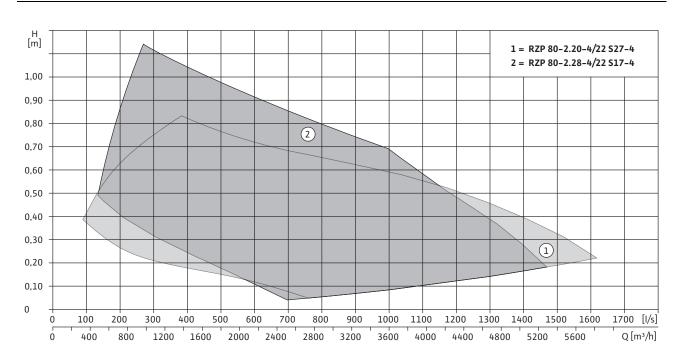

Motordaten							
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schutz nach		
	P ₂	P ₁	I _N	n	FM	ATEX	
	[kW]		[A]	[1/min]	_		
T 20-6/22R (Ex)	9	11,2	19,4	930	•	•	

Alle Daten sind gültig für $3\sim400$ V, 50 Hz und eine Dichte von 1 kg/dm 3 .

^{• =} vorhanden, - = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 80-2...4/22

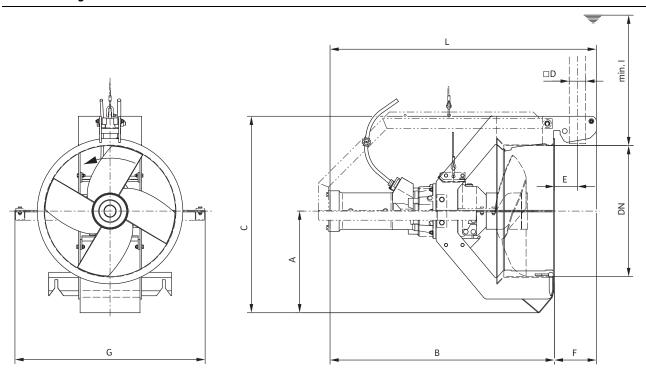

Maße, Gewichte											
Wilo-EMU		Abmessungen									Gewicht
	Α	A B C D E F G I L							DN	Aggregat	
	[mm]									-	[kg]
RZP 80-2/22 S	615	1307	1188	100	140	254	1150	1400	1560	800	415

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 80-2...4/22

Kennlinien

Technische Daten										
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung								
	n	-								
	[1/min]	-								
RZP 80-2.20-4/22 S27-4	200	7,000								
RZP 80-2.28-4/22 S17-4	280	5,286								

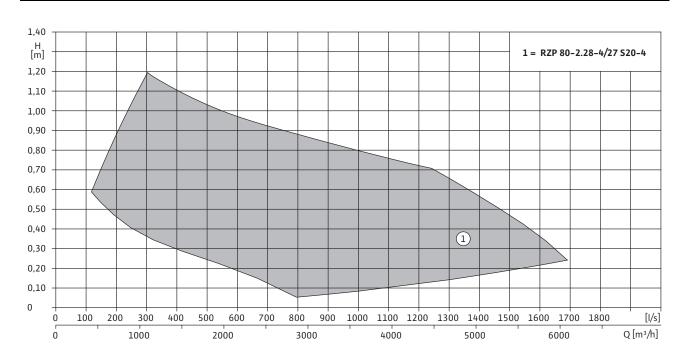

Motordaten							
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schutz nach		
	P ₂	P ₁	I _N	n	FM	ATEX	
	[kW]		[A]	[1/min]	_		
T 20-4/22R (Ex)	12,5	15,3	26	1430	•	•	

Alle Daten sind gültig für $3\sim400~V$, 50~Hz und eine Dichte von $1~kg/dm^3$.

^{• =} vorhanden, - = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 80-2...4/27

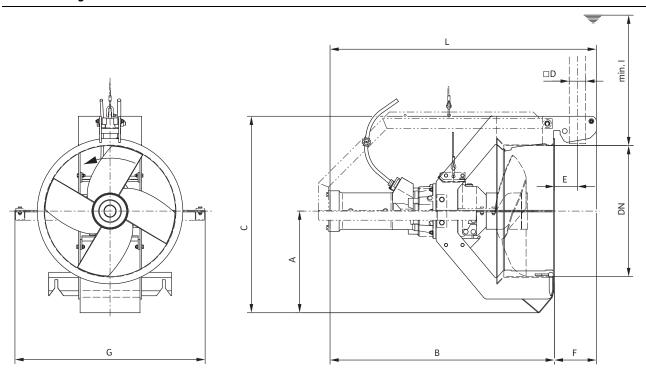

Maße, Gewichte											
Wilo-EMU		Abmessungen								Nennweite Flansch	Gewicht
	Α	В	С	D	E	F	G	I	L	DN	Aggregat
	[mm]								-	[kg]	
RZP 80-2/27 S	615	1357	1188	100	140	254	1150	1400	1610	800	430

Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 80-2...4/27

Kennlinien

Technische Daten		
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung
	n	-
	[1/min]	-
RZP 80-2.28-4/27 S20-4	280	5,286

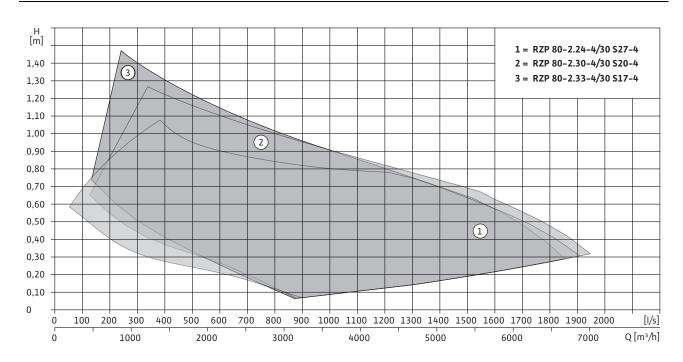

Motordaten							
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nenndrehzahl	Ex-Schutz nach		
	P ₂	P ₁	I _N	n	FM	ATEX	
		[kW]		[1/min]	_		
T 20-4/27R (Ex)	16	18,9	32	1430	•	•	

Alle Daten sind gültig für $3\sim400$ V, 50 Hz und eine Dichte von 1 kg/dm 3 .

• = vorhanden, – = nicht vorhanden

Rezirkulationspumpen Rezijet

Maße, Gewichte Wilo-EMU RZP 80-2...4/30


Maße, Gewichte											
Wilo-EMU		Abmessungen									Gewicht
	Α	A B C D E F G I L							DN	Aggregat	
	[mm]								_	[kg]	
RZP 80-2/30 S	615	1357	1188	100	140	254	1150	1400	16010	800	435

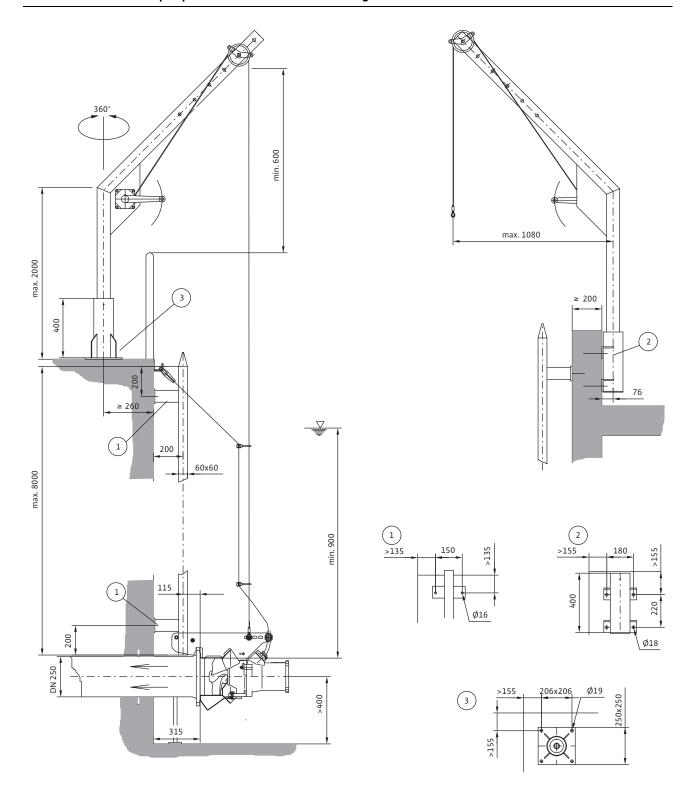
Rezirkulationspumpen Rezijet

Technische Daten, Motordaten Wilo-EMU RZP 80-2...4/30

Kennlinien

Technische Daten									
Wilo-EMU	Propellerdrehzahl	Getriebeübersetzung							
	n	-							
	[1/min]	-							
RZP 80-2.24-4/30 S27-4	240	6,000							
RZP 80-2.30-4/30 S20-4	300	4,750							
RZP 80-2.33-4/30 S17-4	330	4,330							

Motordaten								
Wilo-EMU	Motornenn- leistung	Leistungsaufnahme	Nennstrom	Nennstrom Nenndrehzahl		Ex-Schutz nach		
	P ₂	P ₁	I _N	n	FM	ATEX		
	[kW]		[A]	[1/min]	_			
T 20-4/30R (Ex)	18,5	22	36,5	1435	•	•		


Alle Daten sind gültig für $3\sim400~V$, 50~Hz und eine Dichte von $1~kg/dm^3$.

^{• =} vorhanden, - = nicht vorhanden

Rezirkulationspumpen Rezijet

Einbaubeispiel

Wilo-EMU Rezirkulationspumpe RZP 25-2 mit Absenkvorrichtung AVR

Wilo-EMU Rezirkulationspumpe RZP 60-3 mit Absenkvorrichtung AVRZD

Tauchmotor-Rührwerke

Mechanisches Zubehör

Absenkvorrichtung AVU... für Miniprop und Uniprop Tauchmotor-Rührwerke

Die Absenkvorrichtungen vom Typ AVU... sind flexible Systeme für die Wandmontage. Durch ein Kugelgelenk aus Kunststoff werden auch leichte Unebenheiten bei der Montage ausgeglichen. Die Absenkvorrichtung nimmt die entstehenden Rührkräfte auf und leitet diese in das Bauwerk ab. Ein hohes Widerstandsmoment in den Führungsrohren, Kunststoffauskleidungen im Gleitschlitten und großflächige gummierte Aufleger für große Rührwerke gewährleisten eine hohe Standsicherheit und Langlebigkeit.

Für optimale Rührergebnisse kann das Rühwerk horizontal geschwenkt werden. In Verbindung mit einer Hilfshebevorrichtung kann das Rührwerk auch in unterschiedlichen Höhen betrieben werden.

Der Werkstoff der Absenkvorrichtung richtet sich nach den Abwasserbestandteilen, wie z.B. dem Chloritgehalt. Wilo kann die im Klärwerksbau gängigen Werkstoffe, Stahl verzinkt, A2–Stahl (1.4301) und A4–Stahl (1.4571) bearbeiten und liefern. Als Standard sind Längen bis zu 6 m lieferbar, Sonderlängen auf Anfrage.

Die Montage erfolgt komplett ohne Schweißarbeiten. Die Absenkvorrichtung wird mittels bautechnisch zugelassener Verbundanker direkt am Bauwerk montiert. Bei Befestigungen an Stahlbauwerksteilen erfolgt die Montage durch rostfreie Schraubverbindungen.

Absenkvorrichtung AVM... für Uniprop, Maxiprop und Megaprop Tauchmotor-Rührwerke

Die Absenkvorrichtungen vom Typ AVM... sind feste Stativsysteme für die freie Positionierung im Becken. Dadurch lassen sich die Rührwerke für optimale Rührergebnisse platzieren. Die Absenkvorrichtung nimmt die entstehenden Rührkräfte auf und leitet diese in das Bauwerk ab. Ein hoher Widerstandsmoment in den Führungsrohren, Kunststoffauskleidungen im Gleitschlitten und großflächige gummierte Aufleger gewährleisten eine hohe Standsicherheit und Langlebigkeit.

Wird die Absenkvorrichtung auf einer Betonplatte montiert, kann diese nachträglich in bereits gefüllten Becken installiert werden.

Der Werkstoff der Absenkvorrichtung richtet sich nach den Abwasserbestandteilen, wie z.B. dem Chloridgehalt. Wilo kann die im Klärwerksbau gängigen Werkstoffe, Stahl verzinkt, A2–Stahl (1.4301) und A4–Stahl (1.4571) bearbeiten und liefern. Als Standard sind Längen bis zu 6 m lieferbar, Sonderlängen auf Anfrage.

Die Montage erfolgt komplett ohne Schweißarbeiten. Die Absenkvorrichtung wird mittels bautechnisch zugelassener Verbundanker direkt am Bauwerk montiert. Bei Befestigungen an Stahlbauwerksteilen erfolgt die Montage durch rostfreie Schraubverbindungen.

Absenkvorrichtung AVR... für Rezijet-Rezirkulationspumpen

Die Absenkvorrichtungen vom Typ AVR... sind feste Stativsysteme für die Wandmontage. Über diese lassen sich die Rezirkulationspumpen direkt am Druckrohr anflanschen. Durch die unterschiedlichen Varianten der Absenkvorrichtung sind auch Installationen an den Beckenwänden möglich.

Der Werkstoff der Absenkvorrichtung richtet sich nach den Abwasserbestandteilen, wie z.B. dem Chloridgehalt. Wilo kann die im Klärwerksbau gängigen Werkstoffe, Stahl verzinkt, A2-Stahl (1.4301) und A4-Stahl (1.4571) bearbeiten und liefern. Als Standard sind Längen bis zu 6 m lieferbar, Sonderlängen auf Anfrage.

Die Montage erfolgt komplett ohne Schweißarbeiten. Die Absenkvorrichtung wird mittels bautechnisch zugelassener Verbundanker direkt am Bauwerk montiert. Bei Befestigungen an Stahlbauwerksteilen erfolgt die Montage durch rostfreie Schraubverbindungen.

Mechanisches Zubehör

Hilfshebevorrichtung 125 kg bis 350 kg

Durch die Verwendung einer Hilfshebevorrichtung können die Tauchmotor-Rührwerke oder Rezirkulationspumpen jederzeit leicht installiert oder für Wartungszwecke aus dem Becken gehoben werden. Die Hilfshebevorrichtung besteht aus einer Aufnahmetasche und der Hilfshebevorrichtung selbst. Dadurch kann eine Hilfshebevorrichtung für mehrere Aggregate verwendet werden. Die Aufnahmetasche kann am Boden oder seitlich an der Wand montiert werden.

Bei Miniprop- und kleineren Uniprop-Tauchmotor-Rührwerken kann die Hebevorrichtung dazu verwendet werden, das Aggregat in unterschiedlichen Höhen zu betreiben. Die Hilfshebevorrichtungen sowie die Aufnahmetaschen werden aus den Werkstoffen Stahl verzinkt, A2-Stahl (1.4301) und A4-Stahl (1.4571) gefertigt und haben eine max. Tragfähigkeit von 125 kg, 250 kg, 300 kg oder 350 kg. Die Seilrolle sowie die Gleitsegmente in der Aufnahmetasche sind aus abwasserbeständigem Kunststoff. Die Hebevorrichtungen können mit einer Handwinde aus Aluminium oder Edelstahl ausgerüstet werden. Diese ist ab der 250 kg-Ausführung stufenlos in der Höhe verstellbar.

Alle Hilfshebevorrichtungen sind durch die LGA geprüft und zertifiziert und tragen das GS-Zeichen.

Hilfshebevorrichtung Z, ZT1 und ZT2

Durch die Verwendung einer Hilfshebevorrichtung können die Tauchmotor-Rührwerke oder Rezirkulationspumpen jederzeit leicht installiert oder für Wartungszwecke aus dem Becken gehoben werden. Die Hilfshebevorrichtung besteht aus einer Aufnahmetasche, einem Tragrohr und ein bis drei Auslegern (Z, ZT1, ZT2). Durch die Verwendung von mehreren Aufnahmetaschen kann eine Hilfshebevorrichtung für mehrere Aggregate verwendet werden. Die Aufnahmetasche kann am Boden oder seitlich an der Wand montiert werden.

Die Hilfshebevorrichtungen sowie die Aufnahmetaschen werden aus A2-Stahl (1.4301) gefertigt und haben eine max. Tragfähigkeit zwischen 500 kg mit einer Ausladung von 1,6 m bis 250 kg mit einer Ausladung von 3,2 m. Die Seilrolle sowie die Gleitsegmente in der Aufnahmetasche sind aus abwasserbeständigem Kunststoff. Die Hebevorrichtungen können mit einer Handwinde aus Aluminium oder Edelstahl ausgerüstet werden. Diese ist stufenlos in der Höhe verstellbar.

Alle Hilfshebevorrichtungen sind durch die LGA geprüft und zertifiziert und tragen das GS-Zeichen.

Zusätzliche Kabelabspannung

In den meisten Fällen werden die Stromzuführungsleitungen am Zugseil befestigt und nach oben geführt.

Bei hohen Strömungsgeschwindigkeiten wirken sehr starke Zugkräfte auf das Zugseil und auf die Stromzuführungsleitungen ein. Um beides zu entlasten, kann eine zusätzliche Seilabspannung aus Nylon verwendet werden. Die Zugkräfte werden dann vom Nylonseil aufgenommen.

Weiterhin empfiehlt sich die Seilabspannung bei der Verwendung eines Fanghakens bzw. der Fangvorrichtung, da hier das Zugseil nicht im Becken verbleibt.

Zubehör

Tauchmotor-Rührwerke

Mechanisches Zubehör

Spezialbefestigungsteile

Bei Verwendung einer Hilfshebevorrichtung für mehrere Aggregate muss das Zugseil nach dem Absenken aus der Hilfshebevorrichtung entfernt werden.

Um das Zugseil sicher zu befestigen, empfehlen wir den Einsatz einer Seilbesfestigung. Diese wird am Beckenrand neben der Aufnahmetasche montiert. Hier kann das Zugseil aufgewickelt und mit einer Seilklemme befestigt werden.

Fanghaken

Bei der Installation der Aggregate verbleibt das Zugseil normalerweise im Medium. Hier ist es aber den enormen Zugkräften ausgesetzt und unterliegt somit einem hohem Verschleiß.

Bei Verwendung des Fanghakens kann das Aggregat wie gewohnt abgesenkt werden. Ist das Aggregat am Aufleger angekommen, löst sich der Fanhaken und kann wieder aus dem Medium gezogen werden. Somit ist das Zugseil nicht dem Medium ausgesetzt.

Der Fanghaken eignet sich für den Einsatz in geringen Tiefen bis max. 3 m.

Die Kombination Fanghaken und Hilfshebevorrichtung bietet sich vorallem dann an, wenn eine Hilfshebevorrichtung für mehrere Aggregate verwendet werden soll. Man spart sich hier dann das Entnehmen des Zugseils aus der Hilfshebevorrichtung und benötigt keine weiteren Einrichtungen zur Sicherung des Zugseils.

Fangvorrichtung mit Führungselement

Bei der Installation der Aggregate verbleibt das Zugseil normalerweise im Medium. Hier ist es aber den enormen Zugkräften ausgesetzt und unterliegt somit einem hohem Verschleiß.

Bei Verwendung der Fangvorrichtung mit Führungselement, kann das Aggregat wie gewohnt abgesenkt werden. Ist das Aggregat am Aufleger, klinkt sich die Fangvorrichtung aus und kann wieder aus dem Medium gezogen werden. Somit ist das Zugseil nicht dem Medium ausgesetzt.

Die Fangvorrichtung mit Führungselement ist eine Weiterentwicklung des normalen Fanghakens. Musste man bei diesem noch genau wissen, an welcher Stelle der Fangbügel sitzt, wird hier mit einem Führungselement gearbeitet. Dieses wird einfach auf das Führungsrohr der Absenkvorrichtung gesteckt und an dieser abgelassen. Somit ist auch das Heben der Aggregate kein Problem, da die Fangvorrichtung automatisch im Fangbügel einrastet.

Die Fangvorrichtung eignet sich für den Einsatz ab 2 m Tiefe.

Die Kombination Fangvorrichtung mit Führungselement und Hilfshebevorrichtung bietet sich vor allem dann an, wenn eine Hilfshebevorrichtung für mehrere Aggregate verwendet werden soll. Man spart sich hier dann das Entnehmen des Zugseils aus der Hilfshebevorrichtung und benötigt keine weiteren Einrichtungen zur Sicherung des Zugseils.

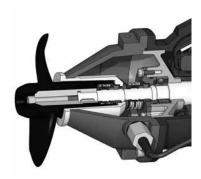
Mechanisches Zubehör

Sonderzubehör nach Kundenwunsch

Da Wilo sein Zubehör komplett in einer In-House-Fertigung herstellt, ist es möglich auf spezielle Kundenwünsche einzugehen. So können zum Beispiel Absenkvorrichtungen auch für Tiefen, die größer als 6 m sind, gefertigt werden.

Darüber hinaus werden auch Sonderbauten für spezielle Kundenanforderungen gefertigt. So wurde für eine Kläranlage eine eigene Absenkvorrichtung konzipiert. Diese musste an einer Betonbrücke befestigt werden und der Einbau der Rührwerke musste im laufenden Betrieb der Anlage erfolgen.

Für eine weitere Kläranlage wurde ein Rührwerk in ein schwimmendes Floß eingebaut. Dadurch wurde eine optimale Positionierung des Rührwerks an die unterschiedlichen Anforderungen möglich. Das Floß wurde durch vier Seile stabilisiert. Um das Rührwerk für Wartungszwecke aus dem Floß zu heben, wurde ebenfalls eine Absenkvorrichtung in das Floß integriert.


Wilo hat die Möglichkeit, mit maßgeschneiderten Lösungen auf die Wünsche seiner Kunden einzugehen. Das ist Pumpen Intelligenz.

Zubehör

Tauchmotor-Rührwerke

Elektrisches Zubehör

Leckageüberwachung

Leckage, welche durch die medienseitige Gleitringdichtung eindringt, wird von der Dichtungskammer (Miniprop und Uniprop direktgetrieben) bzw. Vorkammer (Uniprop mit Getriebe, Maxiprop und Megaprop) aufgenommen. Um hier eine optimale Überwachung zu gewährleisten, kann eine externe Dichtraumelektrode angebracht werden. Sobald eine gewisse Menge Wasser in der Dichtungs- bzw. Vorkammer ist, kann dies über eine Lampe signalisiert oder das Aggregat abgeschaltet werden. Die externe Dichtraumelektrode ist für alle Aggregate nachrüstbar.

Maschinentechnische Ausrüstung

Strahlreiniger

Reinigung von Regenbecken

Bei einer Mischwasserkanalisation werden vor der Kläranlage Regenüberlaufbecken angeordnet. Sie dienen als Puffer zwischen dem Kanalsystem und der Kläranlage. Bei hydraulischer Überlast nehmen diese Becken den Spülstoß mit seiner hohen Schmutzwasserfracht auf, speichern das Regenwasser zwischen und geben nach dem Abklingen des Niederschlags das Regenwasser entsprechend der maximalen Kläranlagenkapazität wieder ab.

Besonders nach langen Trockenperioden ist das Regenwasser stark verunreinigt. Bedingt durch die langen Entleerungszeiten kommt es zu Absetzungen im Becken. Nach der Entleerung der Becken müssen diese Ablagerungen entfernt werden, da es sonst zur Faulung der Sedimentationsschicht und zu starken Geruchsbelästigungen kommen kann

Um das Problem der Beckenreinigung in den Griff zu bekommen, wurde eine Reihe von Beckenreinigungseinrichtungen, wie z. B. die mechanische Räumung, die Spülkippenreinigung oder die Strahldüsenreinigung entwickelt und eingesetzt. Die teilweise sehr komplexen Reinigungseinrichtungen stellen eine wesentliche Verbesserung dar, haben aber alle eines gemeinsam – sie treten erst dann in Aktion, wenn das Becken bereits entleert ist.

Eine zufriedenstellende Reinigung wurde mit allen diesen Lösungen nicht erzielt. Immer noch musste das Klärwerkspersonal unter großem Zeitaufwand die Becken von Hand reinigen.

Funktion des Strahlreinigers

Durch die Strahlreiniger wurde eine Reinigungsart für Regenbecken entwickelt, welche viele Vorteile in sich vereint. Bereits während des Beginns der Entleerung der Regenüberlaufbecken wird der Strahlreiniger in Betrieb genommen und bringt Fest- und Schmutzstoffe in Suspension. Diese verlassen dann das Becken zusammen mit dem Wasser.

Der Wilo-Strahlreiniger besteht aus einer Wilo-Abwasser-Tauchmotorpumpe mit Injektor, Luftansaugrohr und Strahlrohr. Der Strahlreiniger kann in beinahe jedes neue Becken eingebaut und in bereits vorhandene Becken nachgerüstet werden.

Die Wilo-Abwasser-Tauchmotorpumpe saugt das Regenwasser aus der Ablaufrinne an und fördert es durch die Injektordüse über das Strahlrohr in das Becken zurück.

Nach dem Prinzip der Wasserstrahlpumpe wird bei diesem Vorgang gleichzeitig über das Luftansaugrohr Luft angesaugt. Die angesaugte Luft vermischt sich im Strahlrohr mit dem Regenwasser. Der austretende Luft-Wasser-Treibstrahl steht unter hohem Druck und reicht weit in das Becken hinein. Dies bewirkt eine turbulente Strömung, die wiederum eine Ablagerung von Feststoffen verhindert.

Vorteile des Strahlreinigers

Durch das bauseitig vorzusehende Gefälle des Beckens von 2–3 % zur Ablaufrinne entsteht bei dem Umwälzvorgang eine ebenso starke Rückströmung. Bei diesem Vorgang werden organische und anorganische Substanzen aufgewirbelt und zur Ablaufrinne transportiert. Neben der Reinigungswirkung wird gleichzeitig das Wasser mit Sauerstoff angereichert. Diesem Nebeneffekt kann insofern große Bedeutung beigemessen werden, weil das Wasser bei längeren Aufenthaltszeiten im Becken nicht anfaulen kann.

Dies bedeutet:

- keine Geruchsemission durch Austritt von Gasen
- keine Belastung der Kläranlage durch angefaultes Wasser, was mit einer Energieeinsparung bei der Abwasserreinigung verbunden ist
- Wegfall einer Gefährdung der weiterführenden Kanäle durch Schwefelwasserstoff
- Verhinderung von Sielhautbildung
- keine Verwendung von Fremdwasser für den Reinigungsvorgang, es wir das Regenwasser verwendet
- der Reinigungsvorgang beginnt bereits bei der Entleerung des Beckens und zieht sich bis zur endgültigen Entleerung des Beckens durch
- die Schmutzpartikel verteilen sich annähernd gleichmäßig auf das abfließende Beckenwasser
- die Kläranlage ist keinem Spülstoß ausgesetzt
- die Beckenwände werden durch den auftretenden Wellenschlag abgewaschen
- das Regenwasser wird ständig mit Sauerstoff angereichert, infolgedessen keine Schwefelwasserstoffbildung und keine Geruchsbelästigung
- Zerkleinerung und Auflösung organisch gröberer Feststoffe

Maschinentechnische Ausrüstung

Strahlreiniger

- geringe Investitions- und Wartungskosten, dafür eine hohe Lebensdauer der Einrichtung
- insgesamt geringe Betriebskosten durch wirtschaftlichen Betrieb und vollautomatischem Betriebsablauf

Beckenkonstruktion

Für den Einsatz des Strahlreinigers als Reinigungsgerät sollten bei der Planung von Regenbecken folgende Konstruktionsmerkmale beachtet werden:

Rechteckbecken

- das Verhältnis Breite zu Länge sollte im Idealfall 1:2 betragen
- die Beckensohle ist horizontal ohne Querneigungsgefälle, aber mit einem Längsneigungsgefälle von 2–3 % zur Ablaufrinne zu gestalten
- das Volumen der Ablaufrinne ist der Beckengröße anzupassen und sollte ein Nutzvolumen von mind. 3 % der Beckenfläche beinhalten; Die Ablaufrinne dient einmal für die Aufnahme der anorganischen Feststoffanteile und zum anderen als Wasserspeicher für die Restreinigung der Beckensohle. Das Gefälle in der Rinne ist zur Auslaufklappe oder zum Entleerungssumpf möglichst steil auszuführen (5 %)
- die Beckenentleerung soll zügig erfolgen. Während dies beim Pumpvorgang gewährleistet ist, muss bei der Entleerung über Auslaufklappen darauf geachtet werden, dass diese so hoch angebracht sind, dass sie beim Entleerungsvorgang nicht vom Außenwasserspiegel eingestaut werden
- der Beckeneinlauf ist an der Seite der Ablaufrinne vorzusehen. Sollten in der Rinne noch geringe Ablagerungen vom letzten Reinigungsvorgang vorhanden sein, werden diese beim Belüftungsvorgang abgesnült
- der Strahlreiniger wird auf der Beckensohle unmittelbar an der Ablaufrinne eingebaut

Rundbecken

- beim Rundbecken ist die Sohle, horizontal ohne Querneigungsgefälle, mit einer Neigung von 2–3 % einseitig zur Beckenseitenwand (wie eine Scheibe) auszuführen
- auch beim Rundbecken ist eine Einspülrinne vorzusehen
- die weiteren Konstruktionsmerkmale sind wie beim Rechteckbecken zu beachten

Technische Daten mit Auslegungskriterien

Bei der Auswahl des Strahlreinigers ist darauf zu achten, dass die Energiedichte bei 30–40 Watt/m³ liegen sollte (Bezug auf 30 % des Beckeninhaltes).

Die Motoren sind auch in Ex-Ausführung lieferbar. Befestigungsvorrichtung und Strahlrohr werden aus feuerverzinktem Stahl oder aus Edelstahl gefertigt.

Steuerung und Schaltanlagen

Der Reinigungsvorgang erfolgt grundsätzlich automatisch. Je nach Erfordernis arbeitet der Strahlreiniger zunächst intermittierend oder im Dauerbetrieb. Wird ein festgelegter Restwasserstand im Becken erreicht, läuft der Reinigungsvorgang bis zur vollen Entleerung im Dauerbetrieb ab.

In der Schaltanlage sind alle für die Funktion und Überwachung der Reinigungseinrichtung erforderlichen Schalt-, Steuer- und Anzeigegeräte eingebaut. Weitere Beckenüberwachungs- und Aufzeichnungseinrichtungen können zusätzlich eingebaut werden. Als Steuerung für die Strahlreiniger empfiehlt sich die Elektro-Pneumatische-Niveausteuerung, Elektro-Kapazitive-Steuerung oder die Echolot-Steuerung.

Weitere Angaben zu den verwendeten Aggregaten finden Sie in unserem Katalog C2.

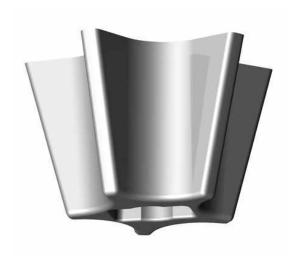
Technische Daten									
Wilo-EMU	Pumpe	Motor	Umwälzleistung	Rechteckbecken	Rundbecken				
			(m ³)	max. (m)	max. (m)				
SR100 D55	FA 10.51E-179	FK 17.1-4/8K Ex	~100	4x8	6				
SR100 D65	FA 10.51E-195	FK 17.1-4/12K Ex	~110	5x10	8				
SR100 D65	FA 10.82E-215	FK 17.1-4/16K Ex	~145	6x12	10				
SR100 D65	FA 10.82E-230	HC 20.1-4/17K Ex	~165	8x16	13				
SR100 D70	FA 10.82E-240 FA 10.82E-245	HC 20.1-4/17K Ex	~185	9x18	14				
SR100 D70	FA 15.52E-260	HC 20.1-4/22K Ex	~200	10x20	15				

Maschinentechnische Ausrüstung

Sandfangpumpen

Ein Sandfang ist ein Absetzbecken mit der Aufgabe, grobe, absetzbare Verunreinigungen aus dem Abwasser zu entfernen, so beispiels-weise Sand, Steine oder Glassplitter. Diese Stoffe würden zu betrieblichen Störungen in der Kläranlage führen (Verschleiß, Verstopfung).

Das Räumen des Sandfanges stellt somit extreme Anforderungen in Bezug auf die Verschleißfestigkeit der Pumpe. Des Weiteren sollen verfestigte Sandablagerungen aufgelockert werden und das Aggregat muss in einer frostsicheren und wetterfesten Ausführung vorhanden sein.


In Sandfanganlagen werden deshalb immer häufiger Abwasserpumpen eingesetzt. Wilo bietet für diesen Anwendungsbereich seine bewährten Abwasser-Tauchmotorpumpen vom Typ Wilo-EMU FA...WR an. Die Abwasser-Tauchmotorpumpen sind überflutbar und können direkt in das Fördermedium eingetaucht werden. Somit lassen sich Saugprobleme vermeiden und ein Maschinenhaus ist überflüssig.

Die Wilo-Abwasser-Tauchmotorpumpe ist für diesen Einsatz mit einem Freistromlaufrad und einer mechanischen Rührvorrichtung ausgerüstet. Die Rührvorrichtung ist direkt am Laufrad angeschraubt. Sie besteht aus einem glatten Rohrzylinder und dem Rührkopf, welcher an der Stirnfläche s-förmig eingeschliffen ist.

Dadurch wir der Sand nur im Bereich des Pumpeneinlaufs aufgewirbelt, feste Ablagerungen werden aufgelockert und können gefördert werden. Durch die eng begrenzte Strömungszone wird das Absetzen des Sandes nicht gestört. Der glatte Rohrzylinder kann sich in der Regel selbständig von langen Faserstoffen freispülen. Da der Rührkopf einem hohem Verschleiß ausgesetzt ist. wird dieser aus dem Hartgusswerkstoff Abrasit gefertigt.

Die Kombination geeigneter verschleißfester Materialien und Beschichtungen sorgt für einen langen und störungsfreien Betrieb.

Weitere Angaben zu den Wilo-Abwasser-Tauchmotorpumpen vom Typ Wilo-EMU FA...WR entnehmen Sie bitte dem Katalog C2.

Wilo Kataloge Ausgabe 2009

Heizung, Klima, Kälte Umwälzpumpen Nassläuferpumpen und Zubehör, Fußboden–Systemtrennung		Katalog A1	
Heizung, Klima, Kälte Trockenläuferpumpen Pumpen in Inline–Bauart und Zubehör		Katalog A2	2 ± 0
Heizung, Klima, Kälte, Wasserversorgung Block– und Normpumpen, Pumpen mit axial geteiltem Gehäuse Pumpen und Zubehör		Katalog A3	
Wasserversorgung Private Wasserversorgung, Regenwassernutzung Pumpen, Systeme und Zubehör		Katalog B1	THE STATE OF THE S
Wasserversorgung Bohrlochpumpen 3" bis 24" Pumpen und Systeme für die Gebäudetechnik, private, kommunale und industrielle Wasserversorgung	EMU Technologie	Katalog B2	
Wasserversorgung Hochdruck-Kreiselpumpen Pumpen und Zubehör		Katalog B3	
Wasserversorgung Druckerhöhungsanlagen Trocken aufgestellte Ein– und Mehrpumpenanlagen und Zubehör		Katalog B4	
Wasserversorgung Sprinklerpumpen mit VdS-Zulassung Bohrlochpumpen und Zubehör	EMU Technologie	Katalog B5	The second of th
Abwasser Schmutzwasserpumpen Tauchmotorpumpen, selbstansaugende Pumpen und Zubehör	EMU Technologie	Katalog C1	
Abwasser Abwasserpumpen DN 32 bis DN 600 Tauchmotorpumpen und Zubehör für die Gebäudetechnik, kommunale und industrielle Anwendungen	EMU Technologie	Katalog C2	
Abwasser Schmutz- und Abwasser-Hebeanlagen, Schachtpumpstationen Pumpensysteme und Zubehör		Katalog C3	Annual Control of Cont
Abwasser Tauchmotor–Rührwerke Rührwerke, Rezirkulationspumpen, Strahlreiniger, Sandfangpumpen und Zubehör für die kommunale Anwendung in Kläranlagen	EMU Technologie	Katalog C4	

WILO SE Nortkirchenstraße 100 44263 Dortmund Germany T 0231 4102-0 F 0231 4102-7363 wilo@wilo.com www.wilo.de

WILO EMU GmbH Heimaartenstraße 1 95030 Hof Germany T 09281 974-0 F 09281 96528 info@wiloemu.de www.wiloemu.com

Wilo-Vertriebsbüros in Deutschland

G1 Nord

WILO SE Vertriebsbüro Hamburg Beim Strohhause 27 20097 Hamburg T 040 5559490 F 040 55594949 hamburg.anfragen@wilo.com

G2 Ost

WILO SE 12051 Berlin-Neukölln T 030 6289370 F 030 62893770 berlin.anfragen@wilo.com G3 Sachsen/Thüringen

WILO SE 01723 Kesselsdorf F 035204 70570 dresden.anfragen@wilo.com

G4 Südost

WILO SE Vertriebsbüro München Adams-Lehmann-Straße 56 80797 München T 089 4200090 F 089 42000944 muenchen.anfragen@wilo.com G5 Südwest

WILO SE Vertriebsbüro Stuttgart Hertichstraße 10 71229 Leonberg T 07152 94710 F 07152 947141 stuttgart.anfragen@wilo.com

G6 Rhein-Main

WILO SE Vertriebsbüro Frankfurt 61440 Oberursel/Ts. T 06171 70460 F 06171 704665 frankfurt.anfragen@wilo.com G7 West

WILO SE Westring 19 40721 Hilden T 02103 90920 F 02103 909215 duesseldorf.anfragen@wilo.com

Kompetenz-Team Gebäudetechnik

WILO SE 44263 Dortmund T 0231 4102-7516 7•8•3•9•4•5•6 F 0231 4102-7666

WILO EMU GmbH Heimgartenstraße 1

95030 Hof T 09281 974-550 F 09281 974-551

Kompetenz-Team

Kommune

Bau + Bergbau

Erreichbar Mo-Fr von 7-18 Uhr.

- Antworten auf
- Produkt- und Anwendungsfragen
- -Informationen über Ansprechpartner vor Ort
- Versand von Informationsunterlagen

* 14 Cent pro Minute aus dem deutschen Festnetz Preisabweichungen möglich.

Werkskundendienst Gebäudetechnik Kommune Bau + Bergbau Industrie

WILO SE 44263 Dortmund T 0231 4102-7900 T 01805 W•I•L•O•K•D* 9-4-5-6-5-3 F 0231 4102-7126

Erreichbar Mo-Fr von 7-17 Uhr. Wochenende und feiertags Bereitschaft mit Rückruf-Garantie!

- -Kundendienst-Anforderung
- WerksreparaturenErsatzteilfragen
- –Inbetriebnahme -Inspektion
- -Technische Service-Beratung
- -Oualitätsanalyse

Wilo-International

Österreich

Zentrale Wien: WILO Pumpen Österreich GmbH Eitnergasse 13 1230 Wien F +43 507 507-15

Vertriebsbüro Salzburg: Gnigler Straße 56 5020 Salzburg T +43 507 507-13 F +43 507 507-15

Vertriebsbüro Oberösterreich: Trattnachtalstraße 7 4710 Grieskirchen T +43 507 507-26

Schweiz

EMB Pumpen AG Gerstenweg 7 4310 Rheinfelden T +41 61 83680-20 F +41 61 83680-21

Standorte weiterer Tochtergesellschaften

Belarus, Belgien, Bulgarien, China, Dänemark, Estland, Finnland, Frankreich, Griechenland, Großbritannien, Niederlande, Norwegen, Polen, Portugal, Rumänien, Russland, Saudi-Arabien, Montenegro, Slowakei, Slowenien, Spanien, Tschechien, Türkei, Ukraine, Ungarn, Vereinigte Arabische Emirate, Vietnam, USA

Die Adressen finden Sie unter www.wilo.de oder www.wilo.com.

Stand November 2008